Câu hỏi:

04/11/2022 7,659

Cho lục giác đều ABCDEF tâm O như hình vẽ bên. Vectơ \(\overrightarrow {OB} \) cùng phương với vectơ nào sau đây?

Cho lục giác đều ABCDEF tâm O như hình vẽ bên. Vectơ OB cùng phương với vectơ (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Hai vectơ cùng phương khi giá của chúng song song hoặc trùng nhau.

Ta có, giá của vectơ \(\overrightarrow {OB} \) là đường thẳng OB hay chính là đường thẳng BE.

Giá của vectơ \(\overrightarrow {OC} \) là đường thẳng OC hay chính là đường thẳng FC.                                             

Giá của vectơ \(\overrightarrow {BC} \) là đường thẳng BC.

Giá của vectơ \(\overrightarrow {BE} \) là đường thẳng BE.

Giá của vectơ \(\overrightarrow {OA} \) là đường thẳng OA hay chính là đường thẳng AD.

Do đó, từ hình vẽ ta thấy giá của vectơ \(\overrightarrow {OB} \) và giá của vectơ \(\overrightarrow {BE} \) trùng nhau, vậy hai vectơ \(\overrightarrow {OB} \)\(\overrightarrow {BE} \) cùng phương.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Cho hình chữ nhật ABCD có AB = 4 cm, AD = 3 cm. Tính vecto BC + vecto BA (ảnh 1)

Do ABCD là hình chữ nhật nên ABCD cũng là hình bình hành, áp dụng quy tắc hình bình hành ta có: \(\overrightarrow {BC} + \overrightarrow {BA} = \overrightarrow {BD} \).

Suy ra, \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right| = \left| {\overrightarrow {BD} } \right| = BD\).

Theo định lí Pythagore trong tam giác vuông ABD, ta có:

BD2 = AB2 + AD2 = 42 + 32 = 25, suy ra BD = 5 (cm).

Vậy \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right| = \left| {\overrightarrow {BD} } \right| = BD\)= 5 cm.

Câu 2

Lời giải

Đáp án đúng là: C

Vì G là trọng tâm của tam giác ABC nên ta có: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \).

Với điểm M bất kỳ, theo quy tắc ba điểm ta có:

\(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \left( {\overrightarrow {MG} + \overrightarrow {GA} } \right) + \left( {\overrightarrow {MG} + \overrightarrow {GB} } \right) + \left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)\)

                             \( = 3\overrightarrow {MG} + \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) = 3\overrightarrow {MG} + \overrightarrow 0 = 3\overrightarrow {MG} \).

Vậy \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP