Câu hỏi:

04/11/2022 4,864

Trong mặt phẳng tọa độ, cặp vectơ nào sau đây cùng phương?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

+ Ta có vectơ \(\overrightarrow a = \left( {1;0} \right)\)\(\overrightarrow b = \left( {0;1} \right)\) lần lượt là các vectơ đơn vị trên các trục Ox và Oy nên hai vectơ này vuông góc với nhau, do đó chúng không cùng phương.

+ Ta có: \(\frac{3}{6} \ne \frac{{ - 2}}{4}\), do đó hai vectơ \(\overrightarrow u = \left( {3; - 2} \right)\)\(\overrightarrow v = \left( {6;4} \right)\) không cùng phương.

+ Ta có: \(\frac{2}{{ - 6}} = \frac{3}{{ - 9}}\left( { = \frac{{ - 1}}{3}} \right)\), do đó hai vectơ \(\overrightarrow i = \left( {2;3} \right)\)\(\overrightarrow j = \left( { - 6; - 9} \right)\) cùng phương.

+ Ta có: \(\frac{2}{{ - 6}} \ne \frac{3}{9}\), do đó hai vectơ \(\overrightarrow c = \left( {2;3} \right)\)\(\overrightarrow d = \left( { - 6;9} \right)\) không cùng phương.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Cho hình chữ nhật ABCD có AB = 4 cm, AD = 3 cm. Tính vecto BC + vecto BA (ảnh 1)

Do ABCD là hình chữ nhật nên ABCD cũng là hình bình hành, áp dụng quy tắc hình bình hành ta có: \(\overrightarrow {BC} + \overrightarrow {BA} = \overrightarrow {BD} \).

Suy ra, \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right| = \left| {\overrightarrow {BD} } \right| = BD\).

Theo định lí Pythagore trong tam giác vuông ABD, ta có:

BD2 = AB2 + AD2 = 42 + 32 = 25, suy ra BD = 5 (cm).

Vậy \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right| = \left| {\overrightarrow {BD} } \right| = BD\)= 5 cm.

Câu 2

Lời giải

Đáp án đúng là: C

Vì G là trọng tâm của tam giác ABC nên ta có: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \).

Với điểm M bất kỳ, theo quy tắc ba điểm ta có:

\(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \left( {\overrightarrow {MG} + \overrightarrow {GA} } \right) + \left( {\overrightarrow {MG} + \overrightarrow {GB} } \right) + \left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)\)

                             \( = 3\overrightarrow {MG} + \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) = 3\overrightarrow {MG} + \overrightarrow 0 = 3\overrightarrow {MG} \).

Vậy \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP