Câu hỏi:
04/11/2022 4,545
Trong mặt phẳng tọa độ Oxy cho ba điểm A(2; 1), B(1; 10) và điểm C(m; 2m – 17). Tất cả các giá trị của tham số m sao cho AB vuông góc với OC là
Trong mặt phẳng tọa độ Oxy cho ba điểm A(2; 1), B(1; 10) và điểm C(m; 2m – 17). Tất cả các giá trị của tham số m sao cho AB vuông góc với OC là
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: \(\overrightarrow {AB} = \left( { - 1;\,\,9} \right)\), \(\overrightarrow {OC} = \left( {m;\,\,2m - 17} \right)\).
AB ⊥ OC \( \Leftrightarrow \overrightarrow {AB} \, \bot \,\overrightarrow {OC} \, \Leftrightarrow \overrightarrow {AB} .\overrightarrow {OC} = 0\)
⇔ (– 1) . m + 9(2m – 17) = 0
⇔ 17m – 153 = 0
⇔ m = 9.
Vậy với m = 9 thì thỏa mãn yêu cầu bài toán.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Suy ra, \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right| = \left| {\overrightarrow {BD} } \right| = BD\).
Theo định lí Pythagore trong tam giác vuông ABD, ta có:
BD2 = AB2 + AD2 = 42 + 32 = 25, suy ra BD = 5 (cm).
Vậy \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right| = \left| {\overrightarrow {BD} } \right| = BD\)= 5 cm.
Lời giải
Đáp án đúng là: C
Vì G là trọng tâm của tam giác ABC nên ta có: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \).
Với điểm M bất kỳ, theo quy tắc ba điểm ta có:
\(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \left( {\overrightarrow {MG} + \overrightarrow {GA} } \right) + \left( {\overrightarrow {MG} + \overrightarrow {GB} } \right) + \left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)\)
\( = 3\overrightarrow {MG} + \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) = 3\overrightarrow {MG} + \overrightarrow 0 = 3\overrightarrow {MG} \).
Vậy \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.