Câu hỏi:

06/12/2022 1,641

Cho hàm số y=3x2x có đồ thị (C). Có tất cả bao nhiêu đường thẳng cắt (C) tại hai điểm phân biệt mà hoành độ và tung độ của hai giao điểm này đều là các số nguyên?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp giải:

- Tìm số điểm có hoành độ và tung độ là các số nguyên thuộc đồ thị hàm số y=3x2x, giả sử là n.

- Số đường thẳng thỏa mãn là số đường thẳng đi qua 2 trong n điểm trên, tức là Cn2 đường thẳng.

Giải chi tiết:

Để đường thẳng cắt (C) tại 2 điểm có hoành độ và tung độ là các số nguyên thì điểm có hoành độ và tung độ là các số nguyên  phải thuộc đồ thị hàm số y=3x2x.

Ta có: y=3x2x=32xx0.

Để y2xx±1;±2.

Khi đó các điểm có hoành độ và tung độ là các số nguyên thuộc đồ thị hàm số y=3x2x A1;1;B1;5;C=2;2;D2;4.

Vậy có C42=6 đường thẳng thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp giải:

- Tính đạo hàm hàm g'x , sử dụng công thức tính đạo hàm 1u'=u'u2 .

- Giải bất phương trình g'x > 0  và suy ra các khoảng đồng biến của hàm số.

Giải chi tiết:

ĐKXĐ: fx0x2;x0;x3 .

Ta có gx=1fxg'x=f'xf2x

Xét g'x>0f'xf2x>0f'x<0 .

Dựa vào BBT ta thấy: f'x<0x;1\2x1;3

Hàm số gx=1fx  đồng biến trên ;2;2;1;1;3 .

1;21;3  nên hàm số cũng đồng biến trên .

Câu 2

Cho hàm số y=fx  bảng biến thiên như hình vẽ

Cho hàm số y= f(x) bảng biến thiên như hình vẽ  Số nghiệm của phương trình  (ảnh 1)

Số nghiệm của phương trình fx1=0  là:

Lời giải

Đáp án D

Phương pháp giải:

Số nghiệm của phương trình fx=a là số giao điểm của đồ thị hàm số y=fx với đường thẳng y=a.

Giải chi tiết:

Ta có: fx1=0fx=1.

Suy ra: số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=fx và đường thẳng y = 1

Cho hàm số y= f(x) bảng biến thiên như hình vẽ  Số nghiệm của phương trình  (ảnh 2)

Từ BBT ta thấy: hai đồ thị y=fx và y = 1 có ba giao điểm.

Vậy phương trình đã cho có 3 nghiệm phân biệt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay