Cho hàm số đa thức bậc năm y= f(x) có đồ thị như hình bên dưới:
Số nghiệm của phương trình là:
Cho hàm số đa thức bậc năm y= f(x) có đồ thị như hình bên dưới:

Số nghiệm của phương trình là:
Quảng cáo
Trả lời:
Đáp án B
Phương pháp giải:
- Đặt , sử dụng tương giao đồ thị hàm số tìm nghiệm t.
- Rút , tiếp tục sử dụng tương giao đồ thị hàm số tìm nghiệm x.
Giải chi tiết:
Đặt , phương trình trở thành .
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số và đồ thị hàm số .
Ta có đồ thị:

Dựa vào đồ thị hàm số ta thấy phương trình (*) có 4 nghiệm phân biệt
Khi đó ta có
Tiếp tục sử dụng tương giao ta có:

- Phương trình (1) có 2 nghiệm phân biệt.
- Phương trình (2) có 4 nghiệm phân biệt.
- Phương trình (3) có 4 nghiệm phân biệt.
- Phương trình (4) có 4 nghiệm phân biệt.
Tất cả các nghiệm là không trùng nhau. Vậy phương trình ban đầu có tất cr 14 nghiệm phân biệt.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Phương pháp giải:
- Tính đạo hàm hàm , sử dụng công thức tính đạo hàm .
- Giải bất phương trình và suy ra các khoảng đồng biến của hàm số.
Giải chi tiết:
ĐKXĐ: .
Ta có
Xét .
Dựa vào BBT ta thấy:
⇒ Hàm số đồng biến trên .
Vì nên hàm số cũng đồng biến trên .
Lời giải
Đáp án D
Phương pháp giải:
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số với đường thẳng .
Giải chi tiết:
Ta có: .
Suy ra: số nghiệm của phương trình là số giao điểm của đồ thị hàm số và đường thẳng y = 1

Từ BBT ta thấy: hai đồ thị và y = 1 có ba giao điểm.
Vậy phương trình đã cho có 3 nghiệm phân biệt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.