Cho hàm số y= f(x) có đạo hàm trên R và f'(x) có bảng biến thiên như sau:
Hàm số có bao nhiêu điểm cực trị?
Cho hàm số y= f(x) có đạo hàm trên R và f'(x) có bảng biến thiên như sau:

Hàm số có bao nhiêu điểm cực trị?
Quảng cáo
Trả lời:
Đáp án A
Phương pháp giải:
Giải chi tiết:
Ta có
Xét hàm số ta có .
BBT:

Dựa vào BBT ta có:
+ Phương trình (1) có 2 nghiệm phân biệt khác 0.
+ Phương trình (2) có 2 nghiệm phân biệt khác 0.
+ Phương trình (3) có 2 nghiệm phân biệt khác 0.
+ Phương trình (4) có 2 nghiệm phân biệt khác 0.
+ Phương trình (5) vô nghiệm.
Các nghiệm trên đều là nghiệm bội lẻ (nghiệm đơn) và phân biệt.
Do đó phương trình có 9 nghiệm bội lẻ.
Vậy hàm số có tất cả 9 điểm cực trị.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Phương pháp giải:
- Tính đạo hàm hàm , sử dụng công thức tính đạo hàm .
- Giải bất phương trình và suy ra các khoảng đồng biến của hàm số.
Giải chi tiết:
ĐKXĐ: .
Ta có
Xét .
Dựa vào BBT ta thấy:
⇒ Hàm số đồng biến trên .
Vì nên hàm số cũng đồng biến trên .
Lời giải
Đáp án D
Phương pháp giải:
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số với đường thẳng .
Giải chi tiết:
Ta có: .
Suy ra: số nghiệm của phương trình là số giao điểm của đồ thị hàm số và đường thẳng y = 1

Từ BBT ta thấy: hai đồ thị và y = 1 có ba giao điểm.
Vậy phương trình đã cho có 3 nghiệm phân biệt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.