Câu hỏi:

06/12/2022 2,691 Lưu

Cho hình chóp S. ABC có AB= a, BC=a3, ABC=600. Hình chiếu vuông góc của S lên mặt phẳng (ABC) là một điểm thuộc cạnh SA. Góc giữa đường thẳng S và mặt phẳng (ABC) bằng 450. Thể tích khối chóp S. ABC đạt giá trị nhỏ nhất bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp giải:

- Xác định góc giữa SA và mặt đáy là góc giữa SA và hình chiếu của nó trên mặt đáy.

- Từ đó tính SH theo HA.

- Tính SABC=12AB.BC.sinABC không đổi VS.ABC đạt GTNN khi HA nhỏ nhất.

- HA đạt GTNN khi và chỉ khi HABC, từ đó tính HA và tính GTNN của VS.ABC.

Giải chi tiết:

Cho hình chóp S. ABC có AB= a,BC= a căn bậc ai 3, ABC= 60 độ , . Hình chiếu vuông góc (ảnh 1)

SA;ABC=SA;HA=SAH=450.

Ta có SHABCSHAHΔSAH vuông cân tại H SH=AH.

Ta có: SABC=12AB.BC.sinABC=12.a.a3.sin600=3a24.

VS.ABC=13SH.SΔABC=13AH.3a24=a24.AH

Để VS.ABC đạt giá trị nhỏ nhất thì AHminAHBCAH=2SΔABCBC=2.3a24a3=a32

Vậy minVS.ABC=a24.a32=a338.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp giải:

- Tính đạo hàm hàm g'x , sử dụng công thức tính đạo hàm 1u'=u'u2 .

- Giải bất phương trình g'x > 0  và suy ra các khoảng đồng biến của hàm số.

Giải chi tiết:

ĐKXĐ: fx0x2;x0;x3 .

Ta có gx=1fxg'x=f'xf2x

Xét g'x>0f'xf2x>0f'x<0 .

Dựa vào BBT ta thấy: f'x<0x;1\2x1;3

Hàm số gx=1fx  đồng biến trên ;2;2;1;1;3 .

1;21;3  nên hàm số cũng đồng biến trên .

Câu 2

Lời giải

Đáp án D

Phương pháp giải:

Số nghiệm của phương trình fx=a là số giao điểm của đồ thị hàm số y=fx với đường thẳng y=a.

Giải chi tiết:

Ta có: fx1=0fx=1.

Suy ra: số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=fx và đường thẳng y = 1

Cho hàm số y= f(x) bảng biến thiên như hình vẽ  Số nghiệm của phương trình  (ảnh 2)

Từ BBT ta thấy: hai đồ thị y=fx và y = 1 có ba giao điểm.

Vậy phương trình đã cho có 3 nghiệm phân biệt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP