Câu hỏi:

09/12/2022 596

Cho hàm số y= f(x) có đạo hàm trên R. Đồ thị hàm số y = f'(x) như hình vẽ bên dưới.

Cho hàm số y= f(x) có đạo hàm trên R. Đồ thị hàm số y = f'(x) như hình vẽ bên dưới. (ảnh 1)

 Số điểm cực tiểu của hàm số gx=2fx+2+x+1x+3 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D.

Ta có :gx=2fx+2+x2+4x+3g'x=2f'x+2+2x+4.

Cho hàm số y= f(x) có đạo hàm trên R. Đồ thị hàm số y = f'(x) như hình vẽ bên dưới. (ảnh 2)

g'x=0f'x+2=xx+2

           x+2=1x+2=0x+2=1x+2=2x=3x=2x=1x=0.

Bảng xét dấu g'x

Cho hàm số y= f(x) có đạo hàm trên R. Đồ thị hàm số y = f'(x) như hình vẽ bên dưới. (ảnh 3)

 

Từ bảng xét dấu, suy ra hàm số có một điểm cực tiểu.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

Có bao nhiêu giá trị nguyên của tham số m để hàm số y=3x44x312x2+m2 có đúng 5 điểm cực trị? 

Lời giải

Chọn B.

Xét hàm số fx=3x44x312x2+m2, hàm số đã cho trở thành y=fx.

Tập xác định của f(x) là: R

Ta có f'x=12x312x224x=12xx2x2,f'x=0x=0x=1x=2.

Bảng biến thiên của f(x):

Có bao nhiêu giá trị nguyên của tham số m để hàm số y= |3x^4-4x^3-12x^2+m^2| có đúng 5 điểm cực trị?  (ảnh 1)

Số điểm cực trị của đồ thị hàm số y=fx bằng số cực trị của đồ thị hàm số y= f(x) cộng với số giao điểm của đồ thị y= f(x) với trục hoành (không tính các điểm tiếp xúc).

Từ bảng biến thiên ta được điều kiện để hàm số y=fx có 5 điểm cực trị là

m232<0m25m2042<m55m<42m=0

Do m nên ta được tập các giá trị của m là 5;4;3;0;3;4;5.

Vậy có 7 giá trị nguyên của m thỏa yêu cầu của bài toán.

Câu 3

Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y=x33mx2+3m22x đồng biến trên khoảng 12;+?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Phương trình 3x4=1 có nghiệm là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay