Câu hỏi:

17/12/2022 7,059

Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới . Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình 3fx=m có đúng 4 nghiệm thực .
Media VietJack

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Số nghiệm của phương trình fx=m3 là số giao điểm của hai đồ thị y=fx và y=m3 .

y=fx=fxkhifx0fxkhifx<0 .

Suy ra cách vẽ: giữ nguyên phần đồ thị nằm trên trục hoành, phần nằm dưới lấy đối xứng qua trục hoành tồi xóa phần dưới đi.

Media VietJack

Dựa và đồ thị ta nhận thấy để phương trình có bốn nghiệm thì

7<m3<921<m<27m3=0m=0m0;22;23;24;25 có 6 giá trị nguyên .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Họ nguyên hàm của hàm số f(x)=3x2sinx là:

Xem đáp án » 16/12/2022 5,921

Câu 2:

Biết rằng 01f(x)dx=2. Giá trị của tích phân 01f(x)2xdx bằng

Xem đáp án » 17/12/2022 2,325

Câu 3:

Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới. Gọi S là tập chứa tất cả các giá trị nguyên của tham số m[2021;2012] để hàm số y=ffx2m+1 có đúng 4 điểm cực trị. Số phần tử của tập S là:Media VietJack

Xem đáp án » 18/12/2022 2,262

Câu 4:

Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=x2+2x+1x24x+5 lần lượt là:

Xem đáp án » 17/12/2022 1,701

Câu 5:

Cho biết nguyên hàm của hàm số y = f(x) trên R là F(x) và có F(0)=2F(1)=4.Giá trị của tích phân 01f(x)dx tương ứng bằng:

Xem đáp án » 17/12/2022 1,639

Câu 6:

Cho phương trình log24x2x+1m=x+1 . Hỏi có tất cả bao nhiêu giá trị nguyên của m để phương trình có hai nghiệm thực x phân biệt ?

Xem đáp án » 17/12/2022 1,482

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL