Câu hỏi:

29/12/2022 5,689

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Đường thẳng SA=a2 vuông góc với đáy (ABCD). Gọi M là trung điểm SC, mặt phẳng α đi qua hai điểm A và M đồng thời song song với BD cắt SB, SD lần lượt tại E, F. Bán kính mặt cầu đi qua năm điểm S, A, E, M, F nhận giá trị nào sau đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chọn C
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Đường thẳng  SA = a căn bậc hai 2 vuông góc với đáy (ABCD). Gọi M là trung điểm SC, (ảnh 1)

Mặt phẳng α song song với BD cắt SB, SD lần lượt tại E, F nên EF // BD

ΔSAC cân tại A, trung tuyến AM nên AMSC

Ta có BDACBDSABDSACBDSC

Do đó EFSC (2)

Từ (1) và (2), suy ra SCαSCAE (*)

Lại có BCABBCSABCSABBCAE (**)

Từ (*) và (**), suy ra AESBCAESB. Tương tự ta cũng có AFSD.

Do đó SEA^=SMA^=SFA^=900 nên năm điểm S, A, E, M, F cùng thuộc mặt cầu tâm I là trung điểm của SA, bán kính R=SA2=a22.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

(S) có tâm I(2,1,-3), bán kính R=4dI,P=3=IH,IHP

r2=R2IH2=169=7r=7

Lời giải

Chọn B

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = a. Cạnh bên SA = a căn bậc hai 2, hình chiếu của điểm S lên mặt phẳng đáy trùng với trung điểm (ảnh 1)

Gọi M là trung điểm AC, suy ra SMABCSMAC.

Tam giác SAC có SM là đường cao và cũng là trung tuyến nên tam giác SAC cân tại S. 

Ta có AC=AB2+BC2=a2, suy ra tam giác SAC đều.

Gọi G là trọng tâm ΔSAC, suy ra GS=GA=GC   (1)

Tam giác ABC vuông tại B, có M là trung điểm cạnh huyền AC nên M là tâm đường tròn ngoại tiếp tam giác ABC.

Lại có SMABC nên SM là trục của tam giác ABC.

Mà G  thuộc SM nên suy ra GA=GB=GC    (2)

Từ (1)  và (2) , suy ra GS=GA=GB=GC hay G là tâm mặt cầu ngoại tiếp khối chóp S.ABC  .

Bán kính mặt cầu R=GS=23SM=a63

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP