Câu hỏi:

01/02/2023 206

Cho tam giác ABC vuông tại A. Mặt phẳng (P) chứa BC và hợp với mặt phẳng (ABC) góc α00<α<900. Gọi β,γ lần lượt là góc hợp bởi hai đường thẳng AB,AC và (P) .Tính giá trị biểu thức P=cos2α+sin2β+sin2γ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

- Kẻ AHPHP, xác định các góc α,β,γ.

- Sử dụng hệ thức lượng trong tam giác vuông và tỉ số lượng giác của góc nhọn trong tam giác vuông tìm mối quan hệ giữa

cosα,sinβ,sinγ.

Cách giải:

Kẻ AHPHP ta có AB;P=ABH=β;AC;P=ACH=γ.

Kẻ HIBCIBC ta có: BCHIBCAHBCAHIBCAI

ABCP=BCAIABC;AIBCHIP;HIBCABC;P=AI;HI=AIH=α.

Áp dụng hệ thức lượng trong tam giác vuông ABC ta có:

1AH2=1AB2+1AC2AH2AI2=AH2AB2+AH2AC2

sin2α=sin2β+sin2γ

1cos2α=sin2β+sin2γ

cos2α+sin2β+sin2γ=1

Vậy P=1.

Chọn D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Biết F(x) là một nguyên hàm của hàm số fx=2xsinx F0=21. Tìm F(x)

Lời giải

Phương pháp:

- Áp dụng các công thức tính nguyên hàm: xndx=xn+1n+1+Cn1, sinxdx=cosx+C.

- Sử dụng giả thiết Fx=21 tìm hằng số C và suy ra Fx.

Cách giải:

Ta có Fx=fxdx=2xsinxdx=x2+cosx+C.

Mà F0=211+C=21C=20.

Vậy Fx=x2+cosx+20.

Chọn B.

Câu 2

Đường cong trong hình bên là đồ thị của hàm số nào?

Đường cong trong hình bên là đồ thị của hàm số nào? (ảnh 1)

Lời giải

Phương pháp:

- Dựa vào đường tiệm cận của đồ thị hàm số và giao điểm của đồ thị hàm số với trục tung.

- Đồ thị hàm số y=ax+bcx+d có TCN y=ac,TCРx=-dc.

Cách giải:

Đồ thị hàm số có đường tiệm cận ngang nằm dưới trục hoành  Loại đáp án B và D.

Đồ thị hàm số cắt trục hoành tại điểm có hoành độ âm nên loại đáp án C.

Chọn A.

Câu 3

Tìm họ nguyên hàm của hàm số fx=x22x+1x2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho bất phương trình 57x2x+1>572x1. Tập nghiệm của bất phương trình có dạng S=a;b. Giá trị của biểu thức A=2ba 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Tổng các nghiệm của phương trình 9x2+9.132x+24=0 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hàm số f(x) f'x=x2021x12020x+1;x. Hàm số đã cho có bao nhiêu điểm cực trị?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Tập xác định của hàm số y=x2021 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay