Câu hỏi:
13/07/2024 5,675
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD với O là giao điểm hai đường chéo AC và BD. Gọi M, N lần lượt là trung điểm các cạnh SA và SD.
1. Chứng minh MO song song với mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng \(\left( {OMN} \right)\) song song với mặt phẳng \(\left( {SBC} \right)\).
2. Gọi K là trung điểm của MO. Chứng minh rằng NK song song với \(\left( {SBC} \right)\).
3. Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng \(\left( {OMN} \right)\). Hỏi thiết diện là hình gì?
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD với O là giao điểm hai đường chéo AC và BD. Gọi M, N lần lượt là trung điểm các cạnh SA và SD.
1. Chứng minh MO song song với mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng \(\left( {OMN} \right)\) song song với mặt phẳng \(\left( {SBC} \right)\).
2. Gọi K là trung điểm của MO. Chứng minh rằng NK song song với \(\left( {SBC} \right)\).
3. Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng \(\left( {OMN} \right)\). Hỏi thiết diện là hình gì?
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Phương pháp:
1. Sử dụng định lí \(\left\{ \begin{array}{l}d \not\subset \left( P \right)\\a \subset \left( P \right)\\d//a\end{array} \right. \Rightarrow d//\left( P \right)\) để chứng minh đường thẳng song song mặt phẳng.
Sử dụng định lí \(\left\{ \begin{array}{l}a,b \subset \left( P \right),a'b' \subset \left( Q \right)\\a \cap b = I,a' \cap b' = I'\\a//a',b//b'\end{array} \right. \Rightarrow \left( P \right)//\left( Q \right)\) để chứng minh hai mặt phẳng song song.
2. Sử dụng định lí \(\left\{ \begin{array}{l}d \subset \left( P \right)\\\left( P \right)//\left( Q \right)\end{array} \right. \Rightarrow d//\left( Q \right)\) để chứng minh đường thẳng song song mặt phẳng.
3. Xác định các giao tuyến của mặt phẳng đã cho với các mặt của hình chóp và suy ra thiết diện.
Cách giải:
1. Chứng minh MO song song với mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng \(\left( {OMN} \right)\) song song với mặt phẳng \(\left( {SBC} \right)\).
Ta có: MO là đường trung bình của tam giác SAC nên \(MO//SC\).
Mà \(SC \subset \left( {SBC} \right)\) nên \(MO//\left( {SBC} \right)\).
MN là đường trung bình của \(\Delta SAD\) nên \(MN//AD\), mà \(AD//BC\) nên \(MN//BC\).
Ta có: \(\left\{ \begin{array}{l}MN,MO \subset \left( {OMN} \right)\\BC,SC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow \left( {OMN} \right)//\left( {SBC} \right)\)
2. Gọi K là trung điểm của MO. Chứng minh rằng NK song song với \(\left( {SBC} \right)\).
Dễ thấy \(NK \subset \left( {OMN} \right)\).
Mà \(\left( {OMN} \right)//\left( {SBC} \right)\) nên \(NK//\left( {SBC} \right)\).
3. Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng \(\left( {OMN} \right)\). Hỏi thiết diện là hình gì?
Ta có:
\(BC \subset \left( {SBC} \right)//\left( {OMN} \right)\) nên \(BC//\left( {OMN} \right)\)
Mà \(BC \subset \left( {ABCD} \right)\) nên \(\left( {OMN} \right) \cap \left( {ABCD} \right) = Ox//BC\).
Trong \(\left( {ABCD} \right)\), qua O kẻ đường thẳng song song với BC cắt CD, AB lần lượt tại E, F.
Khi đó,
\(\left( {OMN} \right) \cap \left( {ABCD} \right) = EF\)
\(\left( {OMN} \right) \cap \left( {SAB} \right) = FM\)
\[\left( {OMN} \right) \cap \left( {SAD} \right) = MN\]
\[\left( {OMN} \right) \cap \left( {SCD} \right) = NE\]
\( \Rightarrow \) Thiết diện là tứ giác MNEF.
Mà \(MN//BC\), \(EF//BC\) nên \(MN//EF\) hay thiết diện là hình thang MNEF.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương pháp:
Thay \(n = 5\) vào công thức hàm số và tính toán.
Cách giải:
Ta có: \({u_5} = \frac{{{5^2} + 3}}{{{{2.5}^2} - 1}} = \frac{4}{7}\).
Lời giải
Đáp án D
Phương pháp:
Sử dụng lí thuyết về đường thẳng song song với mặt phẳng, hai mặt phẳng song song nhận xét tính đúng sai của từng đáp án.
Cách giải:
Đáp án A: sai, ta vẽ được vô số đường thẳng song song với mặt phẳng cho trước.
Đáp án B: sai, mọi đường thẳng nằm trong mặt phẳng này đều song song với mặt phẳng kia chứ không phải song song với mọi đường thẳng nằm trong mặt phẳng kia.
Đáp án C: sai, \(\left( \alpha \right)\) và \(\left( \beta \right)\) có thể cắt nhau theo giao tuyến song song với a và b.
Đáp án D: đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.