Cho hình chóp S.ABCD có đáy là hình bình hành ABCD với O là giao điểm hai đường chéo AC và BD. Gọi M, N lần lượt là trung điểm các cạnh SA và SD.
1. Chứng minh MO song song với mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng \(\left( {OMN} \right)\) song song với mặt phẳng \(\left( {SBC} \right)\).
2. Gọi K là trung điểm của MO. Chứng minh rằng NK song song với \(\left( {SBC} \right)\).
3. Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng \(\left( {OMN} \right)\). Hỏi thiết diện là hình gì?
Quảng cáo
Phương pháp:
1. Sử dụng định lí \(\left\{ \begin{array}{l}d \not\subset \left( P \right)\\a \subset \left( P \right)\\d//a\end{array} \right. \Rightarrow d//\left( P \right)\) để chứng minh đường thẳng song song mặt phẳng.
Sử dụng định lí \(\left\{ \begin{array}{l}a,b \subset \left( P \right),a'b' \subset \left( Q \right)\\a \cap b = I,a' \cap b' = I'\\a//a',b//b'\end{array} \right. \Rightarrow \left( P \right)//\left( Q \right)\) để chứng minh hai mặt phẳng song song.
2. Sử dụng định lí \(\left\{ \begin{array}{l}d \subset \left( P \right)\\\left( P \right)//\left( Q \right)\end{array} \right. \Rightarrow d//\left( Q \right)\) để chứng minh đường thẳng song song mặt phẳng.
3. Xác định các giao tuyến của mặt phẳng đã cho với các mặt của hình chóp và suy ra thiết diện.
Cách giải:
1. Chứng minh MO song song với mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng \(\left( {OMN} \right)\) song song với mặt phẳng \(\left( {SBC} \right)\).
Ta có: MO là đường trung bình của tam giác SAC nên \(MO//SC\).
Mà \(SC \subset \left( {SBC} \right)\) nên \(MO//\left( {SBC} \right)\).
MN là đường trung bình của \(\Delta SAD\) nên \(MN//AD\), mà \(AD//BC\) nên \(MN//BC\).
Ta có: \(\left\{ \begin{array}{l}MN,MO \subset \left( {OMN} \right)\\BC,SC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow \left( {OMN} \right)//\left( {SBC} \right)\)
2. Gọi K là trung điểm của MO. Chứng minh rằng NK song song với \(\left( {SBC} \right)\).
Dễ thấy \(NK \subset \left( {OMN} \right)\).
Mà \(\left( {OMN} \right)//\left( {SBC} \right)\) nên \(NK//\left( {SBC} \right)\).
3. Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng \(\left( {OMN} \right)\). Hỏi thiết diện là hình gì?
Ta có:
\(BC \subset \left( {SBC} \right)//\left( {OMN} \right)\) nên \(BC//\left( {OMN} \right)\)
Mà \(BC \subset \left( {ABCD} \right)\) nên \(\left( {OMN} \right) \cap \left( {ABCD} \right) = Ox//BC\).
Trong \(\left( {ABCD} \right)\), qua O kẻ đường thẳng song song với BC cắt CD, AB lần lượt tại E, F.
Khi đó,
\(\left( {OMN} \right) \cap \left( {ABCD} \right) = EF\)
\(\left( {OMN} \right) \cap \left( {SAB} \right) = FM\)
\[\left( {OMN} \right) \cap \left( {SAD} \right) = MN\]
\[\left( {OMN} \right) \cap \left( {SCD} \right) = NE\]
\( \Rightarrow \) Thiết diện là tứ giác MNEF.
Mà \(MN//BC\), \(EF//BC\) nên \(MN//EF\) hay thiết diện là hình thang MNEF.
1. Trong một nhóm học sinh khối 11 tham gia hoạt động thiện nguyện gồm 3 học sinh nữ và 7 học sinh nam. Cần chọn ra 5 học sinh tham gia trong đợt thứ nhất. Tính xác suất để 5 học sinh được chọn không có quá 1 học sinh nữ.
Gọi 084 283 45 85
Hỗ trợ đăng ký khóa học tại Vietjack
về câu hỏi!