Câu hỏi:

02/02/2023 84

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD với O là giao điểm hai đường chéo ACBD. Gọi M, N lần lượt là trung điểm các cạnh SASD.

   1. Chứng minh MO song song với mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng \(\left( {OMN} \right)\) song song với mặt phẳng \(\left( {SBC} \right)\).

   2. Gọi K là trung điểm của MO. Chứng minh rằng NK song song với \(\left( {SBC} \right)\).

   3. Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng \(\left( {OMN} \right)\). Hỏi thiết diện là hình gì?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

1. Sử dụng định lí \(\left\{ \begin{array}{l}d \not\subset \left( P \right)\\a \subset \left( P \right)\\d//a\end{array} \right. \Rightarrow d//\left( P \right)\) để chứng minh đường thẳng song song mặt phẳng.

Sử dụng định lí \(\left\{ \begin{array}{l}a,b \subset \left( P \right),a'b' \subset \left( Q \right)\\a \cap b = I,a' \cap b' = I'\\a//a',b//b'\end{array} \right. \Rightarrow \left( P \right)//\left( Q \right)\)  để chứng minh hai mặt phẳng song song.

2. Sử dụng định lí \(\left\{ \begin{array}{l}d \subset \left( P \right)\\\left( P \right)//\left( Q \right)\end{array} \right. \Rightarrow d//\left( Q \right)\) để chứng minh đường thẳng song song mặt phẳng.

3. Xác định các giao tuyến của mặt phẳng đã cho với các mặt của hình chóp và suy ra thiết diện.

Cách giải:

Media VietJack

1. Chứng minh MO song song với mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng \(\left( {OMN} \right)\) song song với mặt phẳng \(\left( {SBC} \right)\).

Ta có: MO là đường trung bình của tam giác SAC nên \(MO//SC\).

Mà \(SC \subset \left( {SBC} \right)\) nên \(MO//\left( {SBC} \right)\).

MN là đường trung bình của \(\Delta SAD\) nên \(MN//AD\), mà \(AD//BC\) nên \(MN//BC\).

Ta có: \(\left\{ \begin{array}{l}MN,MO \subset \left( {OMN} \right)\\BC,SC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow \left( {OMN} \right)//\left( {SBC} \right)\)

2. Gọi K là trung điểm của MO. Chứng minh rằng NK song song với \(\left( {SBC} \right)\).

Dễ thấy \(NK \subset \left( {OMN} \right)\).

Mà \(\left( {OMN} \right)//\left( {SBC} \right)\) nên \(NK//\left( {SBC} \right)\).

3. Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng \(\left( {OMN} \right)\). Hỏi thiết diện là hình gì?

Ta có:

\(BC \subset \left( {SBC} \right)//\left( {OMN} \right)\) nên \(BC//\left( {OMN} \right)\)

Mà \(BC \subset \left( {ABCD} \right)\) nên \(\left( {OMN} \right) \cap \left( {ABCD} \right) = Ox//BC\).

Trong \(\left( {ABCD} \right)\), qua O kẻ đường thẳng song song với BC cắt CD, AB lần lượt tại E, F.

Khi đó,

\(\left( {OMN} \right) \cap \left( {ABCD} \right) = EF\)

\(\left( {OMN} \right) \cap \left( {SAB} \right) = FM\)

\[\left( {OMN} \right) \cap \left( {SAD} \right) = MN\]

\[\left( {OMN} \right) \cap \left( {SCD} \right) = NE\]

\( \Rightarrow \) Thiết diện là tứ giác MNEF.

Mà \(MN//BC\), \(EF//BC\) nên \(MN//EF\) hay thiết diện là hình thang MNEF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để tổng số chấm xuất hiện trong hai lần gieo bằng 8.

Xem đáp án » 02/02/2023 491

Câu 2:

1. Trong một nhóm học sinh khối 11 tham gia hoạt động thiện nguyện gồm 3 học sinh nữ và 7 học sinh nam. Cần chọn ra 5 học sinh tham gia trong đợt thứ nhất. Tính xác suất để 5 học sinh được chọn không có quá 1 học sinh nữ.

Xem đáp án » 02/02/2023 105

Câu 3:

2. Trong trận bóng đá chung kết, hai bạn Việt và Nam tham gia sút phạt, biết rằng khả năng sút phạt vào lưới của Việt và Nam lần lượt là 0,7 và 0,8. Tính xác suất để ít nhất một bạn ghi bàn.

Xem đáp án » 02/02/2023 86

Câu 4:

Tìm mệnh đề đúng trong các mệnh đề sau:

Xem đáp án » 02/02/2023 80

Câu 5:

Một hộp có 6 viên bi xanh, 4 viên bi đỏ và 5 viên bi vàng. Chọn ngẫu nhiên 5 viên bi trong hộp, tính xác suất để 5 viên bi được chọn có đủ ba màu và số bi xanh bằng số bi vàng.

Xem đáp án » 02/02/2023 80

Câu 6:

Cho hai hình bình hành ABCDABEF không cùng nằm trong một mặt phẳng. Gọi O, \({O_1}\) lần lượt là tâm của ABCD, ABEF. Lấy M là trung điểm của CD. Hỏi khẳng định nào sau đây sai?

Xem đáp án » 02/02/2023 71

Bình luận


Bình luận