Câu hỏi:

07/02/2023 1,112

Cho hàm số fx=x2mx2+m+6x2x2 (m là tham số). Có bao nhiêu giá trị nguyên của tham số  để hàm số đã cho có 3 điểm cực trị?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cách giải:

Ta có:

fx=x2mx2+m+6x2x2

f'x=2xx2+x2m.x2x24x+m+6

f'x=2xx2+x2m4x+m+6=3x28x+6            khi x>22xx2x2+m4x+m+6=3x2+2m+6 khi x<2

 

Với x=2f'x=3x28x+6>0x>2.

Để hàm số đã cho có 2 điểm cực trị thì phương trình 3x2+2m+6=0x2=2m+63 có 2 nghiệm x1<x2<2 *.

Ta có BXD f(x) như sau:

Cho hàm số f(x)=(x^2-m)|x-2|+ (m+6)x-2x^2 (m là tham số). Có bao nhiêu (ảnh 1)`

Khi đó hàm số ban đầu sẽ thỏa mãn có 3 điểm cực trị.

Ta có *2m+63>02m+63<2m>32m+63<43<m<3.

Mà mm2;1;0;1;2.

Vậy có 5 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

Chọn A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

Bất phương trình log2x2x2log0,5x1+1 có bao nhiêu nghiệm nguyên thuộc 0;2021?

Lời giải

Phương pháp:

- Đưa về cùng cơ số.

- Sử dụng công thức logafx+logagx=logafxgx0<a1,fx,gx>0.

- Giải bất phương trình logarit: logafxbfxaba>1.

Cách giải:

     log2x2x2log0,5x1+1

log2x2x2log2x1+1

log2x2x2+log2x1+1

log2x2x2x11

x2x2x12

x3x22xx2+x+22

x32x2x0

12x0x1+2

Kết hợp điều kiện đề bài x0;2021,xx0;3;4;5;...;2021

Vậy bất phương trình đã cho có 2020 nghiệm nguyên thỏa mãn.

Chọn D.

Câu 3

Cho hàm số bậc ba fx=ax3+bx2+cx+d có đồ thị như hình vẽ sau. Có bao nhiêu số dương trong các số a,b,c,d.

Cho hàm số bậc ba f(x)=ax^3+bx^2+cx+d có đồ thị như hình vẽ sau. (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Một lớp học có 20 nữ và 15 nam. Hỏi có bao nhiêu cách chọn ra 5 bạn sao cho có đủ  nam, nữ và số nam ít hơn số nữ?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho n,k* nk Tìm công thức đúng. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay