Câu hỏi:

07/02/2023 365 Lưu

Cho bất phương trình log375523123+1+log375533133+1+...+log3755x31x3+1<1 với x,x>2. Tổng các nghiệm nguyên của bất phương trình đã cho bằng bao nhiêu? 

A. 54                             
B. 228                           
C. 207     
D. 42

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Phương pháp:

Rút gọn x31x+13+1=x1x+2. Từ đó rút gọn biểu thức trong log và giải bất phương trình.

Cách giải:

Ta có:

     log375523123+1+log375533133+1+...+log3755x31x3+1<1

log375523123+1.33133+1...x31x3+1<1*

Ta có: x31x+13+1=x1x2+x+1x+2x+12x+1+1=x1x2+x+1x+2x2+x+1=x1x+2.

Khi đó

*log3755123+1.14.25.36.47...x2x+1.x31<1

log3755x319.1.2.3x1xx+1<1

x319.1.2.3x1xx+1>3755

23.x2+x+1x2+x>3755

x2+x+1x2+x>111110

1x2+x>1110

x2+x<110

11<x<10

Kết hợp điều kiện đề bài ta có 2<x<10xx3;4;5;...;9.

Vậy tổng các nghiệm nguyên của bất phương trình đã cho bằng: 3+4+...+9=3+9.72=42.

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

  A. 0                               
B. 1                               
C. 2     
D. 3

Lời giải

Phương pháp:

- Sử dụng chiều đồ thị suy ra dấu của hệ số a

- Dựa vào giao điểm của đồ thị với trục tung suy ra dấu của hệ số d

- Dựa vào dấu các điểm cực trị của hàm số suy ra dấu của hệ số b,c

Cách giải:

Đồ thị hàm số có nhánh cuối cùng đi lên nên a > 0

Đồ thị đi qua điểm O0;0 nên d = 0

Hàm số có 2 điểm cực trị x1,x2 và x1+x2>0x1.x2<0.

Ta có y'=3ax2+2bx+c có 2 nghiệm phân biệt x1,x2 thỏa mãn x1+x2>0x1.x2<02b3a>0c3a<0b<0c<0.

Vậy có một số dương trong các số a,b,c,d.

Chọn B.

Câu 3

A. 2019                         
B. 2018                         
C. 2021     
D. 2020

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.y=1x                        
B.y=cotx                      
C.y=1x2+1     
D. y=x3x2+1

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 192375                     
B. 84075                       
C. 113750     
D. 129254

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP