Câu hỏi:

21/02/2023 267

Cho hình chóp S.ABC có SA vuông góc mặt phẳng \(\left( {ABC} \right)\), tam giác ABC vuông tại B. Biết \(SA = 2a,\,\,AB = a,\,\,BC = a\sqrt 3 \). Tính bán kính R của mặt cầu ngoại tiếp hình chóp đã cho.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

+) Xác định trục của mặt đáy (đường thẳng đi qua tâm đường tròn ngoại tiếp đáy và vuông góc với đáy).

+) Xác định đường trung trực của cạnh bên SA.

+) Xác định giao điểm của 2 đường thẳng trên, đó chính là tâm mặt cầu ngoại tiếp khối chóp.

Cho hình chóp S.ABC có SA vuông góc mặt phẳng (ABC) tam giác ABC vuông tại B. Biết  (ảnh 1)

+) Áp dụng định lí Pytago để tính bán kính mặt cầu.

Cách giải:

Gọi E, F, I lần lượt là trung điểm của AC, AB và SC ta có;

E là tâm đường tròn ngoại tiếp tam giác ABC (\(\Delta ABC\) vuông tại B)

 \(IE//SA \Rightarrow IE \bot \left( {ABC} \right) \Rightarrow IA = IB = IC\,\,\,\left( 1 \right)\)

\[{\rm{IF}}//AC \Rightarrow IF \bot SA \Rightarrow IS = IA\,\,\,\left( 2 \right)\]

Từ (1) và (2) \( \Rightarrow \) I là tâm mặt cầu ngoại tiếp khối chóp S.ABC và \(R = \frac{{SC}}{2}\)

Xét tam giác vuông ABC có: \(AC = \sqrt {{a^2} + 3{a^2}} = 2a\)

 

Xét tam giác vuông SAC có: \(SC = \sqrt {4{a^2} + 4{a^2}} = 2\sqrt 2 a\)

 

Vậy \(R = \frac{{2\sqrt 2 a}}{2} = a\sqrt 2 \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Phương pháp:

Đồ thị hàm số \(y = \frac{{ax + b}}{{cx + d}}\left( {ad - bc \ne 0} \right)\) có TCN \(y = \frac{a}{c}\)

Cách giải:

\(y = 1 + \frac{{2x + 1}}{{x + 2}} = \frac{{3x + 3}}{{x + 2}}\) có TCN \(y = 3\)

Câu 2

Lời giải

Đáp án A

Phương pháp:

+) Tìm TXĐ của hàm số.

+) Tính đạo hàm của hàm số.

+) Giải bất phương trình \(y' > 0\) và suy ra các khoảng đồng biến của hàm số.

Cách giải:

TXĐ: \(D = \left( {0; + \infty } \right) \Rightarrow \) D đúng

Ta có: \(y' = \ln x + x.\frac{1}{x} = \ln x + 1 \Rightarrow \) C đúng

\(y' > 0 \Leftrightarrow \ln x > - 1 \Leftrightarrow x > {e^{ - 1}} = \frac{1}{e} \Rightarrow \) Hàm số đồng biến trên khoảng \(\left( {\frac{1}{e}; + \infty } \right) \Rightarrow \) B đúng

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP