CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC cân tại A.Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM + AN = 2AB. (ảnh 1)

a) Do tam giác ABC cân tại A, suy ra AB = AC.

Ta có: AM + AN = AB – BM + AC + CN = 2AB – BM + CN.

Ta lại có AM + AN = 2AB (gt), nên suy ra

2AB – BM + CN = 2AB – BM + CN = 0 BM = CN.

Vậy BM = CN (đpcm).

b) Gọi I là giao điểm của MN và BC.

Qua M kẻ đường thẳng song song với AC cắt BC tại E.

Do ME // NC nên ta có:

MEB^=ACB^ (hai góc đồng vị) nên ∆BME cân tại M BM = ME mà BM = CN nên ME = CN.

CNI^ = IME^ (hai góc so le trong)

MEI^ = NCI^ (hai góc so le trong)

Ta chứng minh được  ΔMEI = ΔNCI  (g . c . g)

Suy ra MI = NI (hai cạnh tương ứng), từ đó suy ra I là trung điểm của MN.

c) Xét hai tam giác MIK và NIK có:

MI = IN (cmt),

MIK^ = NIK^ = 900

IK là cạnh chung. Do đó BAK^ = CAK^

Suy ra KM = KN (hai cạnh tương ứng).

Xét hai tam giác ABK và ACK có: AB = AC(gt),BAK^ = CAK^ (do BK là tia phân giác của BAC^), AK là cạnh chung, do đó ΔABK = ΔACK(c . g . c) 

Suy ra KB = KC (hai cạnh tương ứng).

Xét hai tam giác BKM và CKN có: MB = CN, BK = KN, MK = KC, do đó

ΔBKM = ΔCKN(c . c . c) suy ra MBK^ = KCN^. Mà MBK^ = ACK^ACK^ = KCN^ = 1800 : 2 = 900KCAN. (đpcm)

Lời giải

F là trung điểm AB AF = 12AB; E là trung điểm AC AE = 12AC

Ta có EF song song BC (đường trung bình)

Mà D là trung điểm BC  I là trung điểm EF  AI là trung tuyến ΔAEF

AI = 12AE + 12AF

Theo tính chất trọng tâm:

AG = 23AD = 2312AB + 12AC = 23AE + AF = 23AE + 23AF

DE là đường trung bình tam giác ABC

DE = 12BA = -12AB = -AE  hay DE = -AE + 0 . AF

D là trung điểm BC DC = 12BC

DC = 12BA + 12AC = -12AB + 12AC = -AE + AF

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay