Câu hỏi:

12/07/2024 4,721

Cho ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là các điểm đối xứng của H qua các cạnh AB, AC.

a) Chứng minh A, E, D thẳng hàng và BCED là hình thang.

b) Chứng minh BD . CE = DE24.

c) Cho biết AB = 3cm, AC = 4cm. Tính DE và diện tích DHE.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là các điểm đối xứng của H qua các cạnh AB, AC. (ảnh 1)

a) Do D đối xứng với H qua đoạn AB nên ΔADHcân tại A 

ΔADHcó AB là đường cao đồng thời là phân giác 

DAB^ = HAB^ 

Tương tự với ΔAHE  HAC^ = EAC^

Ta có : 

DAE^ = DAH^ + HAE^ = 2.BAH^ + 2.HAC^ = 2.BAH^ + HAC^ = 2.90 = 180⇒ D, A, E thẳng hàng 

Nhận thấy 

ΔAHC đối xứng với ΔAEC qua đoạn thẳng AC AHC^ = AEC^ = 900 (1)

Tương tự , ta cũng có : BHA^ = BDA^ = 90(2)

Từ (1) và (2)  BD // EC (do 2 góc trong cùng phía bù nhau)

b) Ta có : ΔBHA đồng dạng với ΔAHC 

Suy ra tỷ lệ BHAH = AHHCAH2 = BH . HC

Mà BH = BD , HC = CE

AH2 = BD . CE

4AH2 = 4BD . CE

2AH2 = 4BD . CE (Do AD = AH = AE)

DE2 = 4BD . CE.

c) Ta có: AD = AH (tính chất đối xứng), AH = AE (tính chất đối xứng)

Suy ra AD = AE mà A, D, E thẳng hàng nên A là trung điểm của DE.

Xét tam giác vuông ABC, vuông tại A, có:

1AH2=1AB2+1AC2=132+142=25144AH=125

AD=AE=AH=125

DE = 245 cm.

Xét tam giác ABC vuông tại A có:

tanABC^=ACAB=43sinABC^=45sinADH^=45

Xét tam giác DHE vuông tại H, có:

sinADH^=EHED=EH245=45EH=9625DH=7225

Vậy diện tích tam giác DEH là: 12DH.EH=12.9625.72255,5 (đvdt).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

tan2x - sin2x = sin2xcos2x - sin2x = sin2x . 1cos2x - 1 = sin2x . sin2xcos2x = tan2x . sin2x

Lời giải

Cho tam giác ABC cân tại A.Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM + AN = 2AB. (ảnh 1)

a) Do tam giác ABC cân tại A, suy ra AB = AC.

Ta có: AM + AN = AB – BM + AC + CN = 2AB – BM + CN.

Ta lại có AM + AN = 2AB (gt), nên suy ra

2AB – BM + CN = 2AB – BM + CN = 0 BM = CN.

Vậy BM = CN (đpcm).

b) Gọi I là giao điểm của MN và BC.

Qua M kẻ đường thẳng song song với AC cắt BC tại E.

Do ME // NC nên ta có:

MEB^=ACB^ (hai góc đồng vị) nên ∆BME cân tại M BM = ME mà BM = CN nên ME = CN.

CNI^ = IME^ (hai góc so le trong)

MEI^ = NCI^ (hai góc so le trong)

Ta chứng minh được  ΔMEI = ΔNCI  (g . c . g)

Suy ra MI = NI (hai cạnh tương ứng), từ đó suy ra I là trung điểm của MN.

c) Xét hai tam giác MIK và NIK có:

MI = IN (cmt),

MIK^ = NIK^ = 900

IK là cạnh chung. Do đó BAK^ = CAK^

Suy ra KM = KN (hai cạnh tương ứng).

Xét hai tam giác ABK và ACK có: AB = AC(gt),BAK^ = CAK^ (do BK là tia phân giác của BAC^), AK là cạnh chung, do đó ΔABK = ΔACK(c . g . c) 

Suy ra KB = KC (hai cạnh tương ứng).

Xét hai tam giác BKM và CKN có: MB = CN, BK = KN, MK = KC, do đó

ΔBKM = ΔCKN(c . c . c) suy ra MBK^ = KCN^. Mà MBK^ = ACK^ACK^ = KCN^ = 1800 : 2 = 900KCAN. (đpcm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay