Câu hỏi:

06/03/2023 404

Cho tam giác ABC đều tâm O. M là điểm tùy ý trong tam giác. MD, ME, MF tương ứng vuông góc với BC, CA, AB. Chọn khẳng định đúng?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chọn C
Cho tam giác ABC đều tâm O. M là điểm tùy ý trong tam giác. MD, ME, MF tương ứng vuông góc với BC, CA, AB. Chọn khẳng định đúng? (ảnh 1)

Qua M, kẻ các đường thẳng IJ // BC, HK // AC, PQ // AB.

∆ABC đều nên ABC^=ACB^=60°.

Mà PQ // AB nên MQK^=ABC^=60°;

HK // AC nên MKQ^=ACB^=60°

∆MQK có: MQK^=MKQ^=60° nên là tam giác đều.

Lại có MD là đường cao kẻ từ M nên MD đồng thời là đường trung tuyến

Do đó D là trung điểm của QK.

MQ+MK=2MD (1)

Chứng minh tương tự ta cũng có:

+) MH+MI=2MF (2)

+) MP+MJ=2ME (3)

Từ (1), (2) và (3) ta có:

MQ+MK+MH+MI+MP+MJ=2MD+2MF+2ME2MD+MF+ME=MQ+MI+MK+MJ+MH+MP

Vì MI // BQ, MQ // BI nên tứ giác MIBQ là hình bình hành

MI+MQ=MB

Tương tự ta có: MK+MJ=MC;MH+MP=MA

Khi đó: 2MD+MF+ME=MB+MC+MA

MD+MF+ME=12MB+MC+MA

Lại có O là trọng tâm của tam giác ABC nên MB+MC+MA=3MO

MD+MF+ME=12.3MO=32MO

Vậy MD+ME+MF=32MO

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A, đường cao AH, AB = 6 cm, AC = 8 cm.
a) Tính BC, BH, HC, AH
.

Xem đáp án » 12/07/2024 30,926

Câu 2:

Cho phương trình: x2mx + m − 1 = 0 (1). Tìm m để phương trình (1) có hai nghiệm phân biệt x1 và x2 thoả mãn: x12 + 3x1x2 = 3x2 + 3m + 16.

Xem đáp án » 12/07/2024 14,898

Câu 3:

Chứng minh a2 + b2 + c2 < 2(ab + bc + ca) với mọi số thực a, b, c là độ dài ba cạnh của một tam giác.

Xem đáp án » 12/07/2024 13,952

Câu 4:

c) Tìm m để đường thẳng (d) cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho diện tích tam giác OAB bằng 2.

Xem đáp án » 12/07/2024 12,117

Câu 5:

Cho hàm số bậc bốn f (x) có bảng biến thiên như sau:

Cho hàm số bậc bốn f (x) có bảng biến thiên như sau:   Số điểm cực trị của hàm số g(x)  x4[f (x − 1)]2 là: (ảnh 1)

Số điểm cực trị của hàm số g(x) = x4[f (x 1)]2 là:

Xem đáp án » 12/07/2024 12,047

Câu 6:

Cho điểm A nằm ngoài đường tròn (O; R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).

a) Chứng minh rằng: OA  BC và OA // BD.

Xem đáp án » 12/07/2024 11,348

Câu 7:

Cho hàm số bậc bốn f (x) có bảng biến thiên như sau:

Cho hàm số bậc bốn f (x) có bảng biến thiên như sau:   Số điểm cực trị của hàm số g(x) = x2[f (x − 1)]4 là: (ảnh 1)

Số điểm cực trị của hàm số g(x) = x2[f (x 1)]4 là:

Xem đáp án » 12/07/2024 9,917

Bình luận


Bình luận