Câu hỏi:
20/03/2023 1,453Cho hai đường tròn (O; R) và (O'; R') tiếp xúc ngoài tại A (R > R'). Vẽ dây AM của đường tròn (O) và dây AN của đường tròn (O') sao cho AM ⊥ AN. Gọi BC là tiếp tuyến chung ngoài của hai đường tròn (O) và (O') với B thuộc (O) và C thuộc (O').
a) Chứng minh ba đường thẳng MN, BC và OO' đồng quy.
b) Xác định vị trí của M và N để tứ giác MNOO' có diện tích lớn nhất. Tính giá trị lớn nhất đó.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Ta có:
• \({\widehat O_1} = 180^\circ - 2{\widehat A_1}\)
• \({\widehat {O'}_1} = 2{\widehat A_2} = 2\left( {90^\circ - {{\widehat A}_1}} \right) = 180^\circ - 2{\widehat A_1}\)
Do đó: \({\widehat O_1} = {\widehat {O'}_1} \Rightarrow OM\;{\rm{//}}\;O'N\).
Gọi P là giao điểm của MN và OO'.
Ta có: \(\frac{{PO'}}{{PO}} = \frac{{O'N}}{{OM}} = \frac{{R'}}{R}\).
Gọi P' là giao điểm của BC và OO'.
Vì OB // O'C nên \(\frac{{P'O'}}{{P'O}} = \frac{{O'C}}{{OB}} = \frac{{R'}}{R}\).
Suy ra P' ≡ P.
b) Từ O' kẻ O'H ^ MO. Khi đó:
\({S_{OMNO'}} = \frac{{\left( {O'N + OM} \right).O'H}}{2} = \frac{{\left( {R' + R} \right).O'H}}{2}\)
\( \le \frac{{\left( {R' + R} \right).O'O}}{2} = \frac{{{{\left( {R' + R} \right)}^2}}}{2}\).
Dấu “=” xảy ra khi và chỉ khi O'H = O'O hay H ≡ O
Û O'O ^ MO hoặc O'O ^ NO'.
Vậy tứ giác MNO'O có diện tích lớn nhất là \(\frac{{{{\left( {R' + R} \right)}^2}}}{2}\) Û O'O ^ MO.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M, N là các tiếp điểm).
a) Chứng minh rằng OA ⊥ MN.
b) Vẽ đường kính NC. Chứng minh rằng MC // AO.
c) Tính độ dài các cạnh của ∆AMN biết OM = 3 cm, OA = 5 cm.
Câu 4:
Câu 6:
Cho đường tròn tâm O, đường kính AB và điểm C thuộc đường tròn sao cho AC > BC. Qua O vẽ đường thẳng vuông góc với dây AC ở H. Kẻ tiếp tuyến tại A của đường tròn cắt tia OH ở D. BD cắt đường tròn tâm O ở E.
a) Chứng minh HA = HC.
b) Biết \[\widehat {DCO} = 90^\circ \]. Chứng minh OH . DO = DE . DB.
c) Trên tia đối của EA lấy F sao cho E là trung điểm AF. Từ F vẽ đường thẳng AD vuông góc ở K; KF cắt BC ở M. Chứng minh MK = MF.
Câu 7:
Cho ba điểm A(– 4; 0), B(0; 3) C(2; 1).
a) Xác định tọa độ \[\overrightarrow u = 2\overrightarrow {AC} \;--\overrightarrow {AB} \].
b) Tìm điểm M sao cho MA + 2MB + 3MC = 0.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận