Câu hỏi:

20/03/2023 1,475

Cho hai đường tròn (O; R) và (O'; R') tiếp xúc ngoài tại A (R > R'). Vẽ dây AM của đường tròn (O) và dây AN của đường tròn (O') sao cho AM AN. Gọi BC là tiếp tuyến chung ngoài của hai đường tròn (O) và (O') với B thuộc (O) và C thuộc (O').

a) Chứng minh ba đường thẳng MN, BC và OO' đồng quy.

b) Xác định vị trí của M và N để tứ giác MNOO' có diện tích lớn nhất. Tính giá trị lớn nhất đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Ta có:

\({\widehat O_1} = 180^\circ - 2{\widehat A_1}\)

\({\widehat {O'}_1} = 2{\widehat A_2} = 2\left( {90^\circ - {{\widehat A}_1}} \right) = 180^\circ - 2{\widehat A_1}\)

Do đó: \({\widehat O_1} = {\widehat {O'}_1} \Rightarrow OM\;{\rm{//}}\;O'N\).

Gọi P là giao điểm của MN và OO'.

Ta có: \(\frac{{PO'}}{{PO}} = \frac{{O'N}}{{OM}} = \frac{{R'}}{R}\).

Gọi P' là giao điểm của BC và OO'.

Vì OB // O'C nên \(\frac{{P'O'}}{{P'O}} = \frac{{O'C}}{{OB}} = \frac{{R'}}{R}\).

Suy ra P' ≡ P.

b) Từ O' kẻ O'H ^ MO. Khi đó:

\({S_{OMNO'}} = \frac{{\left( {O'N + OM} \right).O'H}}{2} = \frac{{\left( {R' + R} \right).O'H}}{2}\)

\( \le \frac{{\left( {R' + R} \right).O'O}}{2} = \frac{{{{\left( {R' + R} \right)}^2}}}{2}\).

Dấu=” xảy ra khi và chỉ khi O'H = O'O hay H ≡ O

Û O'O ^ MO hoặc O'O ^ NO'.

Vậy tứ giác MNO'O có diện tích lớn nhất là \(\frac{{{{\left( {R' + R} \right)}^2}}}{2}\) Û O'O ^ MO.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Đỉnh G có tọa độ (0; 4) nên a . 02 + b . 0 + c = 4

Do đó c = 4.

Điểm D có tọa độ (2; 3) nên a . 22 + b . 2 + 4 = 3

4a + 2b = −14 (1)

Điểm C có tọa độ (–2; 3) nên a . (−2)2 + b . (−2) + 4 = 3

4a – 2b = −14 (2)

Từ (1) và (2) suy ra a = – 0,25; b = 0.

Khi đó parabol có dạng y = −0,25 . x2 + 4

Điểm A và B có tung độ y = 0

−0,25 . x2 + 4 = 0

x = 4 hoặc x = – 4

Suy ra điểm B có tọa độ (4; 0) và điểm A có tọa độ (– 4; 0).

Vậy khoảng cách giữa hai điểm A và B là 8.

Lời giải

Lời giải

Media VietJack

a) Ta có: AN = AM (tính chất tiếp tuyến)

Suy ra ∆AMN cân tại A

Mặt khác, OA là tia phân giác cũng là đường cao

Do đó OA  MN (đpcm).

b) Đặt H là giao điểm của MN và AO.

Ta có MH = HN (OA  MN nên H là trung điểm MN).

Mà CO = CN = R.

Suy ra OH là đường trung bình của ∆MNC.

Do đó OH // MC hay MC // OA (đpcm).

c) Ta có OM = ON = R nên ON = 3 cm.

Ta có: ON2 + AN2 = AO2 (theo định lý Py-ta-go)

Suy ra AN2 = AO2 – ON2 = 52 – 32 = 25 – 9 = 16 

 AN = \[\sqrt {16} \] = 4 (cm)

Ta có: AO.HN = AN.NO (hệ thức lượng trong tam giác vuông).

Suy ra 5HN = 4 . 3 = 12  HN = \[\frac{{12}}{5}\] = 2,4 (cm).

Ta có MN = 2HN = 2 . 2,4 = 4,8 (H là trung điểm MN).

Vậy AM = AN = 4 cm; MN = 4,8 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay