Câu hỏi:
20/03/2023 1,482
Cho hai đường tròn (O; R) và (O'; R') tiếp xúc ngoài tại A (R > R'). Vẽ dây AM của đường tròn (O) và dây AN của đường tròn (O') sao cho AM ⊥ AN. Gọi BC là tiếp tuyến chung ngoài của hai đường tròn (O) và (O') với B thuộc (O) và C thuộc (O').
a) Chứng minh ba đường thẳng MN, BC và OO' đồng quy.
b) Xác định vị trí của M và N để tứ giác MNOO' có diện tích lớn nhất. Tính giá trị lớn nhất đó.
Cho hai đường tròn (O; R) và (O'; R') tiếp xúc ngoài tại A (R > R'). Vẽ dây AM của đường tròn (O) và dây AN của đường tròn (O') sao cho AM ⊥ AN. Gọi BC là tiếp tuyến chung ngoài của hai đường tròn (O) và (O') với B thuộc (O) và C thuộc (O').
a) Chứng minh ba đường thẳng MN, BC và OO' đồng quy.
b) Xác định vị trí của M và N để tứ giác MNOO' có diện tích lớn nhất. Tính giá trị lớn nhất đó.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Ta có:
• \({\widehat O_1} = 180^\circ - 2{\widehat A_1}\)
• \({\widehat {O'}_1} = 2{\widehat A_2} = 2\left( {90^\circ - {{\widehat A}_1}} \right) = 180^\circ - 2{\widehat A_1}\)
Do đó: \({\widehat O_1} = {\widehat {O'}_1} \Rightarrow OM\;{\rm{//}}\;O'N\).
Gọi P là giao điểm của MN và OO'.
Ta có: \(\frac{{PO'}}{{PO}} = \frac{{O'N}}{{OM}} = \frac{{R'}}{R}\).
Gọi P' là giao điểm của BC và OO'.
Vì OB // O'C nên \(\frac{{P'O'}}{{P'O}} = \frac{{O'C}}{{OB}} = \frac{{R'}}{R}\).
Suy ra P' ≡ P.
b) Từ O' kẻ O'H ^ MO. Khi đó:
\({S_{OMNO'}} = \frac{{\left( {O'N + OM} \right).O'H}}{2} = \frac{{\left( {R' + R} \right).O'H}}{2}\)
\( \le \frac{{\left( {R' + R} \right).O'O}}{2} = \frac{{{{\left( {R' + R} \right)}^2}}}{2}\).
Dấu “=” xảy ra khi và chỉ khi O'H = O'O hay H ≡ O
Û O'O ^ MO hoặc O'O ^ NO'.
Vậy tứ giác MNO'O có diện tích lớn nhất là \(\frac{{{{\left( {R' + R} \right)}^2}}}{2}\) Û O'O ^ MO.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đỉnh G có tọa độ (0; 4) nên a . 02 + b . 0 + c = 4
Do đó c = 4.
Điểm D có tọa độ (2; 3) nên a . 22 + b . 2 + 4 = 3
⇔ 4a + 2b = −14 (1)
Điểm C có tọa độ (–2; 3) nên a . (−2)2 + b . (−2) + 4 = 3
⇔ 4a – 2b = −14 (2)
Từ (1) và (2) suy ra a = – 0,25; b = 0.
Khi đó parabol có dạng y = −0,25 . x2 + 4
Điểm A và B có tung độ y = 0
⇔ −0,25 . x2 + 4 = 0
⇔ x = 4 hoặc x = – 4
Suy ra điểm B có tọa độ (4; 0) và điểm A có tọa độ (– 4; 0).
Vậy khoảng cách giữa hai điểm A và B là 8.
Lời giải
Lời giải
a) Ta có: AN = AM (tính chất tiếp tuyến)
Suy ra ∆AMN cân tại A
Mặt khác, OA là tia phân giác cũng là đường cao
Do đó OA ⊥ MN (đpcm).
b) Đặt H là giao điểm của MN và AO.
Ta có MH = HN (OA ⊥ MN nên H là trung điểm MN).
Mà CO = CN = R.
Suy ra OH là đường trung bình của ∆MNC.
Do đó OH // MC hay MC // OA (đpcm).
c) Ta có OM = ON = R nên ON = 3 cm.
Ta có: ON2 + AN2 = AO2 (theo định lý Py-ta-go)
Suy ra AN2 = AO2 – ON2 = 52 – 32 = 25 – 9 = 16
⇒ AN = \[\sqrt {16} \] = 4 (cm)
Ta có: AO.HN = AN.NO (hệ thức lượng trong tam giác vuông).
Suy ra 5HN = 4 . 3 = 12 ⇒ HN = \[\frac{{12}}{5}\] = 2,4 (cm).
Ta có MN = 2HN = 2 . 2,4 = 4,8 (vì H là trung điểm MN).
Vậy AM = AN = 4 cm; MN = 4,8 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.