Câu hỏi:
13/07/2024 2,620Cho ∆ ABC vuông tại A có AB = 3 cm, AC = 4 cm.
a) Giải ∆ABC.
b) Gọi I là trung điểm của BC, vẽ AH ⊥ BC. Tính AH, AI.
c) Qua A kẻ đường thẳng vuông góc với AI. Đường thẳng vuông góc với BC tại B cắt xy tại điểm M, đường thẳng vuông góc với BC tại C cắt xy tại điểm N. Chứng minh \[MB\,\,.\,NC = \frac{{B{C^2}}}{4}\].
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Áp dụng định lý Py-ta-go vào ∆ABC vuông tại A, ta có:
BC = \[\sqrt {A{B^2} + A{C^2}} = 5\] (cm)
sin\[\widehat B\] = \[\frac{{AB}}{{AC}} = \frac{4}{5}\] ⇒ \[\widehat B \approx 53^\circ \]
\[\widehat C = 90^\circ - \widehat B = 37^\circ \]
b) Vì AI là trung tuyến ứng ch BC nên AI = \[\frac{1}{2}\]BC = 2,5 (cm)
AH. BC = AB . AC ⇒ AH = \[\frac{{AB.AC}}{{BC}} = \frac{{12}}{5}\](cm)
c) Xét ∆AMI và ∆BMI có:
IA = IB
\[\widehat {IAM} = \widehat {IAM} = 90^\circ \]
IM chung
Do đó ∆AMI = ∆BMI (cạnh huyền – góc vuông)
Suy ra \[\left\{ \begin{array}{l}MA = MB\\\widehat {AIM} = \widehat {BIM}\end{array} \right.\] (các cạnh và các góc tương ứng).
Do đó IN là phân giác của \[\widehat {AIC}\].
Do \[\widehat {AIB} + \widehat {AIC}\]= 180° nên IM ⊥ IN.
Suy ra ∆IMN vuông tại I.
Mà IA ⊥ MN
Do đó MB . NC = AM . AN = IA2 = \[{\left( {\frac{{BC}}{2}} \right)^2} = \frac{{B{C^2}}}{4}\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 5:
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M, N là các tiếp điểm).
a) Chứng minh rằng OA ⊥ MN.
b) Vẽ đường kính NC. Chứng minh rằng MC // AO.
c) Tính độ dài các cạnh của ∆AMN biết OM = 3 cm, OA = 5 cm.
Câu 6:
Câu 7:
Trong mặt phẳng tọa độ Oxy cho parabol (P): y = \[ - \frac{1}{2}\]x2 và đường thẳng (d) y = mx + m – 3(với m là tham số).
a) Khi m = –1, tìm tọa độ giao điểm của đường thẳng (d) và parabol (P).
b) Tìm m để đường thẳng (d) và parabol (P)cắt nhau tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn hệ thức x12 + x22 = 14.
về câu hỏi!