Câu hỏi:
11/07/2024 232Cho tam giác ABC cân tại A có đường cao AD, O là trung điểm AC, điểm E đối xứng với điểm D qua điểm O.
a) Chứng minh tứ giác AECD là hình chữ nhật.
b) Gọi I là trung điểm AD, Chứng minh I là trung điểm BE.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
a) Vì O là trung điểm AC nên O là trung điểm của DE (E đối D qua O).
Suy ra AECD là hình bình hành (định nghĩa hình bình hành).
Mà \[\widehat {ADC}\] = 90° (AD ⊥ BC).
Do đó AECD là hình chữ nhật.
b) Vì AECD là hình chữ nhật (chứng minh trên).
Nên AE = CD và AE // CD (tính chất hình bình hành).
Mà DC = BD (D trung điểm BC do AD ⊥ BC, ΔABC cân tại A).
Do đó: AE // BD (B ∈ CD), AE = BD.
Suy ra AEDB là hình bình hành (định nghĩa hình bình hành)
Mà I là trung điểm AD nên I là trung điểm BE (tính chất hình bình hành).CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M, N là các tiếp điểm).
a) Chứng minh rằng OA ⊥ MN.
b) Vẽ đường kính NC. Chứng minh rằng MC // AO.
c) Tính độ dài các cạnh của ∆AMN biết OM = 3 cm, OA = 5 cm.
Câu 6:
Câu 7:
Cho ba điểm A(– 4; 0), B(0; 3) C(2; 1).
a) Xác định tọa độ \[\overrightarrow u = 2\overrightarrow {AC} \;--\overrightarrow {AB} \].
b) Tìm điểm M sao cho MA + 2MB + 3MC = 0.
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!