Câu hỏi:
13/07/2024 13,149
Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng:
\(\frac{{a + bc}}{{b + c}} + \frac{{b + ca}}{{c + a}} + \frac{{c + ab}}{{a + b}} \ge 2\).
Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng:
\(\frac{{a + bc}}{{b + c}} + \frac{{b + ca}}{{c + a}} + \frac{{c + ab}}{{a + b}} \ge 2\).
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
\[\frac{{a + bc}}{{b + c}} + \frac{{b + ca}}{{c + a}} + \frac{{c + ab}}{{a + b}}\]
\( = \frac{{a\left( {a + b + c} \right) + bc}}{{b + c}} + \frac{{b\left( {a + b + c} \right) + ca}}{{c + a}} + \frac{{c\left( {a + b + c} \right) + ab}}{{a + b}}\)
\[ = \frac{{\left( {a + b} \right)\left( {a + c} \right)}}{{b + c}} + \frac{{\left( {a + b} \right)\left( {b + c} \right)}}{{a + c}} + \frac{{\left( {c + a} \right)\left( {c + b} \right)}}{{a + b}}\].
Áp dụng BĐT Cô-si ta có:
\(\frac{{\left( {a + b} \right)\left( {a + c} \right)}}{{b + c}} + \frac{{\left( {a + b} \right)\left( {b + c} \right)}}{{a + c}} \ge 2\left( {a + b} \right)\)
Tương tự \(\frac{{\left( {a + b} \right)\left( {b + c} \right)}}{{a + c}} + \frac{{\left( {c + a} \right)\left( {c + b} \right)}}{{a + b}} \ge 2\left( {b + c} \right)\).
Và \(\frac{{\left( {a + b} \right)\left( {a + c} \right)}}{{b + c}} + \frac{{\left( {c + a} \right)\left( {c + b} \right)}}{{a + b}} \ge 2\left( {a + c} \right)\).
Suy ra
\(2\left( {\frac{{\left( {a + b} \right)\left( {a + c} \right)}}{{b + c}} + \frac{{\left( {a + b} \right)\left( {b + c} \right)}}{{a + c}} + \frac{{\left( {c + a} \right)\left( {c + b} \right)}}{{a + b}}} \right) \ge 2\left( {a + b} \right) + 2\left( {b + c} \right) + 2\left( {a + c} \right)\)
\( \Rightarrow \frac{{\left( {a + b} \right)\left( {a + c} \right)}}{{b + c}} + \frac{{\left( {a + b} \right)\left( {b + c} \right)}}{{a + c}} + \frac{{\left( {c + a} \right)\left( {c + b} \right)}}{{a + b}} \ge 2\left( {a + b + c} \right)\)
\( \Rightarrow \frac{{a + bc}}{{b + c}} + \frac{{b + ca}}{{c + a}} + \frac{{c + ab}}{{a + b}} \ge 2\left( {a + b + c} \right) = 2\) (đpcm).Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Ta có y = x3 − 3(2m + 1)x2 + (12m + 5)x + 2
y' = 3x2 − 6(2m + 1)x + 12m + 5
Để hàm số y = x3 − 3(2m + 1)x2 + (12m + 5)x + 2 đồng biến trên khoảng (2; +∞) thì:
y' = 3x2 − 6(2m + 1)x + 12m + 5 ≥ 0 (∀x > 2)
3x2 − 6x + 5 ≥ 12m(x − 1) (∀x > 2)
\( \Leftrightarrow \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}} \ge m\;\left( {\forall x > 2} \right)\)
Đặt \(g\left( x \right) = \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}} \Rightarrow m \le \mathop {\min }\limits_{x > 2} g\left( x \right)\)
Ta có: \(g'\left( x \right) = \frac{{3{x^2} - 6x + 1}}{{12{{\left( {x - 1} \right)}^2}}} > 0\;\left( {\forall x > 2} \right)\)
\( \Rightarrow g\left( x \right) > g\left( 2 \right)\;\left( {\forall x > 2} \right)\)
\( \Rightarrow m \le g\left( 2 \right) = \frac{5}{{12}}\).
Lời giải
Lời giải
A = x2 + xy + y2 − 3x − 3y
Þ 4A = 4x2 + 4xy + 4y2 − 12x − 12y
= (x2 + 4y2 + 9 + 4xy − 6x − 12y) + (3x2 − 6x + 3) − 12
= (x + 2y − 3)2 + 3(x − 1)2 − 12 ≥ −12
Þ A ≥ −3.
Vậy A đạt GTNN bằng −3 khi và chỉ khi
\(\left\{ \begin{array}{l}x + 2y - 3 = 0\\x - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\end{array} \right. \Leftrightarrow x = y = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.