Câu hỏi:

20/03/2023 515

Tìm các tham số a, b, c sao cho hàm số y = ax2 + bx + c đạt GTNN là 4 tại x = 2 và đồ thị hàm số của nó cắt trục tung tại điểm có tung độ là 6.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Với a ≠ 0. Theo bài ra ta có:

\[\left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\\frac{{4ac - {b^2}}}{{4a}} = 4\\c = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\24a - {b^2} = 16a\\c = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\16{a^2} - 8a = 0\\c = 6\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\\left[ \begin{array}{l}a = 0\;\;\,\left( {KTM} \right)\\a = \frac{1}{2}\;\;\left( {TM} \right)\end{array} \right.\\c = 6\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b = - 2\\c = 6\end{array} \right.\].

Gói VIP thi online tại VietJack (chỉ 200k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết.

Nâng cấp VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho bất phương trình: (m2)x2 + 2(43m)x + 10m − 11 ≤ 0 (1). Gọi S là tập hợp các số nguyên dương m để bất phương trình đúng với mọi x < −4. Tìm số phần tử của S.

Xem đáp án » 20/03/2023 1,800

Câu 2:

Từ một điểm A nằm ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M bất kỳ, vẽ MI vuông góc với AB, MK vuông góc với AC (I thuộc AB, K thuộc AC).

a) Chứng minh AIMK, ABOC là các tứ giác nội tiếp;

b) Vẽ MP vuông góc với BC (P thuộc BC). Chứng minh \(\widehat {MPK} = \widehat {MBC}\);

c) Chứng minh MI.MK = MP2;

d) Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất.

Xem đáp án » 20/03/2023 874

Câu 3:

Tìm GTNN: A = x2 + xy + y23x3y

Xem đáp án » 20/03/2023 711

Câu 4:

Tính chu vi và diện tích một hình tam giác vuông có một cạnh góc vuông dài 24 cm và bằng \(\frac{3}{4}\) cạnh góc vuông kia. Cạnh còn lại dài 40 cm.

Xem đáp án » 20/03/2023 471

Câu 5:

Cho hình chữ nhật ABCD, vẽ BH vuông góc AC tại H, tia BH cắt CD tại I và cắt đường thẳng AD tại K. Chứng minh:

a) AC . AH = BH . BK.

b) BH2 = HI . HK.

Xem đáp án » 20/03/2023 463

Câu 6:

Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a; \(SA = a\sqrt 3 \); SA ^ (ABCD). Gọi M, N lần lượt là trung điểm của SB; SD, mặt phẳng (AMN) cắt SC tại I. Tính thể tích của khối đa diện ABCDMIN

Xem đáp án » 20/03/2023 451

Bình luận


Bình luận

TÀI LIỆU VIP VIETJACK