Câu hỏi:

19/08/2025 10,246 Lưu

Cho tam giác ABC, trên các đường thẳng BC, AC, AB lần lượt lấy các điểm M, N, P sao cho \(\overrightarrow {MB} = 3\overrightarrow {MC} ;\,\overrightarrow {NA} = 3\overrightarrow {CN} ;\,\overrightarrow {PA} + \overrightarrow {PB} = \vec 0\).

a) \(\overrightarrow {PM} ,\,\overrightarrow {PN} \) theo \(\overrightarrow {AB} ,\,\overrightarrow {AC} \).

b) Chứng minh M, N, P thẳng hàng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Media VietJack

a) Ta có \(\overrightarrow {PA} + \overrightarrow {PB} = \vec 0\).

Suy ra P là trung điểm AB.

Ta có \(\overrightarrow {MB} = 3\overrightarrow {MC} = 3\left( {\overrightarrow {MB} - \overrightarrow {CB} } \right) = 3\overrightarrow {MB} - 3\overrightarrow {CB} \).

Suy ra \( - 2\overrightarrow {MB} = - 3\overrightarrow {CB} \).

Do đó \(\overrightarrow {BM} = \frac{3}{2}\overrightarrow {BC} \).

Ta có \[\overrightarrow {PM} = \overrightarrow {PB} + \overrightarrow {BM} = \frac{1}{2}\overrightarrow {AB} + \frac{3}{2}\overrightarrow {BC} \].

\[ = \frac{1}{2}\overrightarrow {AB} + \frac{3}{2}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = - \overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} \].

Ta có \[\overrightarrow {NA} = 3\overrightarrow {CN} = 3\left( {\overrightarrow {CA} - \overrightarrow {NA} } \right) = 3\overrightarrow {CA} - 3\overrightarrow {NA} \].

Suy ra \[4\overrightarrow {NA} = 3\overrightarrow {CA} \].

Do đó \[\overrightarrow {AN} = \frac{3}{4}\overrightarrow {AC} \].

Ta có \(\overrightarrow {PN} = \overrightarrow {PA} + \overrightarrow {AN} = - \frac{1}{2}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} \).

b) Ta có \[\overrightarrow {PN} = - \frac{1}{2}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} = \frac{1}{2}\left( { - \overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} } \right) = \frac{1}{2}\overrightarrow {PM} \].

Vậy ba điểm M, N, P thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Gọi N là trung điểm AC.

Do H là điểm đối xứng của B qua G.

Suy ra G là trung điểm của BH.

Do đó \(GH = BG = \frac{2}{3}BN = 2GN\) (do G là trọng tâm tam giác ABC).

Vì vậy N là trung điểm GH (do 4 điểm B, G, N, H thẳng hàng).

Suy ra GN = NH.

Ta có \(\overrightarrow {AH} = \overrightarrow {AN} + \overrightarrow {NH} = \overrightarrow {AN} + \overrightarrow {GN} \)

\( = \overrightarrow {AN} + \frac{1}{3}\overrightarrow {BN} = \overrightarrow {AN} + \frac{1}{3}\left( {\overrightarrow {BA} + \overrightarrow {AN} } \right)\)

\[ = \frac{4}{3}\overrightarrow {AN} - \frac{1}{3}\overrightarrow {AB} = \frac{4}{3}\left( {\frac{1}{2}\overrightarrow {AC} } \right) - \frac{1}{3}\overrightarrow {AB} \]

\[ = \frac{2}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} \].

Ta có \(\overrightarrow {CH} = \overrightarrow {CN} + \overrightarrow {NH} = \overrightarrow {CN} + \overrightarrow {GN} \)

\( = \overrightarrow {CN} + \frac{1}{3}\overrightarrow {BN} = \overrightarrow {CN} + \frac{1}{3}\left( {\overrightarrow {BA} + \overrightarrow {AN} } \right)\)

\[ = \overrightarrow {CN} - \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AN} = - \frac{1}{2}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}.\frac{1}{2}\overrightarrow {AC} \]

\( = - \frac{1}{3}\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} \).

Vậy ta có điều phải chứng minh.

b) \(\overrightarrow {MH} = \overrightarrow {MB} + \overrightarrow {BH} = \frac{1}{2}\overrightarrow {CB} + \overrightarrow {BA} + \overrightarrow {AH} \)

\( = \frac{1}{2}\left( {\overrightarrow {CA} + \overrightarrow {AB} } \right) - \overrightarrow {AB} + \frac{2}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} \)

\( = - \frac{5}{6}\overrightarrow {AB} + \frac{1}{6}\overrightarrow {AC} \).

Vậy ta có điều phải chứng minh.

Lời giải

Lời giải

Media VietJack

a) Ta có \(VT = \overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} \) (do M, N, P lần lượt là trung điểm của BC, CA, AB).

\( = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) + \frac{1}{2}\left( {\overrightarrow {BA} + \overrightarrow {BC} } \right) + \frac{1}{2}\left( {\overrightarrow {CA} + \overrightarrow {CB} } \right)\)

\( = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {BA} } \right) + \frac{1}{2}\left( {\overrightarrow {CB} + \overrightarrow {BC} } \right) + \frac{1}{2}\left( {\overrightarrow {CA} + \overrightarrow {AC} } \right)\)

\( = \frac{1}{2}.\vec 0 + \frac{1}{2}.\vec 0 + \frac{1}{2}.\vec 0 = \vec 0 = VP\).

Vậy ta có điều phải chứng minh.

b) Ta có \(VT = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right) + \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OC} } \right) + \frac{1}{2}\left( {\overrightarrow {OB} + \overrightarrow {OC} } \right)\)

\( = \frac{1}{2}.2\overrightarrow {OP} + \frac{1}{2}.2\overrightarrow {ON} + \frac{1}{2}.2\overrightarrow {OM} \)

\( = \overrightarrow {OP} + \overrightarrow {ON} + \overrightarrow {OM} = VP\).

Vậy ta có điều phải chứng minh.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP