Câu hỏi:
13/07/2024 1,693Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Tứ giác ADHE, có:
\[\widehat {DAE} = 90^\circ \] (do tam giác ABC vuông tại A);
\[\widehat {ADH} = 90^\circ \] (do HD ⊥ AB tại D);
\[\widehat {AEH} = 90^\circ \] (do HE ⊥ AC tại E).
Do đó tứ giác ADHE là hình chữ nhật.
Vậy AH = DE.
b) Tam giác HEC vuông tại E có EQ là đường trung tuyến.
Suy ra EQ = HQ = QC.
Khi đó tam giác HEQ cân tại Q.
Vì vậy \(\widehat {QEH} = \widehat {QHE}\) (1)
Hình chữ nhật ADHE có O là giao điểm của hai đường chéo AH và DE.
Suy ra O là trung điểm của AH và O cũng là trung điểm của DE.
Mà AH = DE (chứng minh trên).
Do đó OH = OE = OD = OA.
Vì vậy tam giác OHE cân tại O.
Suy ra \(\widehat {OEH} = \widehat {OHE}\) (2)
Ta có AH ⊥ HQ (giả thiết).
Suy ra \(\widehat {OHQ} = 90^\circ \).
Vì vậy \(\widehat {OHE} + \widehat {QHE} = 90^\circ \) (3)
Từ (1), (2), (3), suy ra \(\widehat {OEQ} = 90^\circ \).
Khi đó OE ⊥ EQ (*)
Chứng minh tương tự, ta được OD ⊥ DP (**)
Từ (*), (**), suy ra PD // EQ.
Mà \(\widehat {OEQ} = 90^\circ \) (chứng minh trên).
Vậy tứ giác DEQP là hình thang vuông.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC. Gọi H là điểm đối xứng với B qua G với G là trọng tâm tam giác. Chứng minh:
a) \(\overrightarrow {AH} = \frac{2}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} ;\,\overrightarrow {CH} = - \frac{1}{3}\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} \).
b) \(\overrightarrow {MH} = \frac{1}{6}\overrightarrow {AC} - \frac{5}{6}\overrightarrow {AB} \), với M là trung điểm BC.
Câu 2:
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB và O là 1 điểm tùy ý.
a) Chứng minh rằng: \(\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} = \vec 0\).
b) Chứng minh rằng \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OM} + \overrightarrow {ON} + \overrightarrow {OP} \).
Câu 4:
Cho hai điểm A(3; –5), B(1; 0).
a) Tìm tọa độ điểm C sao cho \[\overrightarrow {OC} = - 3\overrightarrow {AB} \].
b) Tìm điểm D đối xứng của A qua C.
c) Tìm điểm M chia đoạn AB theo tỉ số k = –3.
Câu 5:
Câu 6:
Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a, có \(\widehat {BAD} = 60^\circ \) và \(SA = SB = SD = \frac{{a\sqrt 3 }}{2}\).
a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC.
b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD).
c) Chứng minh SB vuông góc với BC.
d) Gọi φ là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính tanφ.
Câu 7:
Cho tam giác ABC, trên các đường thẳng BC, AC, AB lần lượt lấy các điểm M, N, P sao cho \(\overrightarrow {MB} = 3\overrightarrow {MC} ;\,\overrightarrow {NA} = 3\overrightarrow {CN} ;\,\overrightarrow {PA} + \overrightarrow {PB} = \vec 0\).
a) \(\overrightarrow {PM} ,\,\overrightarrow {PN} \) theo \(\overrightarrow {AB} ,\,\overrightarrow {AC} \).
b) Chứng minh M, N, P thẳng hàng.
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!