Câu hỏi:

13/07/2024 1,321

Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.

a) Chứng minh AH = DE.

b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 160k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Tứ giác ADHE, có:

\[\widehat {DAE} = 90^\circ \] (do tam giác ABC vuông tại A);

\[\widehat {ADH} = 90^\circ \] (do HD AB tại D);

\[\widehat {AEH} = 90^\circ \] (do HE AC tại E).

Do đó tứ giác ADHE là hình chữ nhật.

Vậy AH = DE.

b) Tam giác HEC vuông tại E có EQ là đường trung tuyến.

Suy ra EQ = HQ = QC.

Khi đó tam giác HEQ cân tại Q.

Vì vậy \(\widehat {QEH} = \widehat {QHE}\)   (1)

Hình chữ nhật ADHE có O là giao điểm của hai đường chéo AH và DE.

Suy ra O là trung điểm của AH và O cũng là trung điểm của DE.

Mà AH = DE (chứng minh trên).

Do đó OH = OE = OD = OA.

Vì vậy tam giác OHE cân tại O.

Suy ra \(\widehat {OEH} = \widehat {OHE}\)   (2)

Ta có AH HQ (giả thiết).

Suy ra \(\widehat {OHQ} = 90^\circ \).

Vì vậy \(\widehat {OHE} + \widehat {QHE} = 90^\circ \)   (3)

Từ (1), (2), (3), suy ra \(\widehat {OEQ} = 90^\circ \).

Khi đó OE EQ (*)

Chứng minh tương tự, ta được OD DP   (**)

Từ (*), (**), suy ra PD // EQ.

\(\widehat {OEQ} = 90^\circ \) (chứng minh trên).

Vậy tứ giác DEQP là hình thang vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đổi: 4 giờ 30 phút = … giờ.

Xem đáp án » 13/07/2024 9,613

Câu 2:

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, SA = SB = SD = a, \[\widehat {BAD} = 60^\circ \]. Góc giữa đường thẳng SA và mặt phẳng (SCD) bằng

Xem đáp án » 22/03/2023 8,330

Câu 3:

Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a, có \(\widehat {BAD} = 60^\circ \)\(SA = SB = SD = \frac{{a\sqrt 3 }}{2}\).

a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC.

b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD).

c) Chứng minh SB vuông góc với BC.

d) Gọi φ là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính tanφ.

Xem đáp án » 13/07/2024 7,263

Câu 4:

Cho hai điểm A(3; –5), B(1; 0).

a) Tìm tọa độ điểm C sao cho \[\overrightarrow {OC} = - 3\overrightarrow {AB} \].

b) Tìm điểm D đối xứng của A qua C.

c) Tìm điểm M chia đoạn AB theo tỉ số k = –3.

Xem đáp án » 13/07/2024 5,662

Câu 5:

Cho tam giác ABC, trên các đường thẳng BC, AC, AB lần lượt lấy các điểm M, N, P sao cho \(\overrightarrow {MB} = 3\overrightarrow {MC} ;\,\overrightarrow {NA} = 3\overrightarrow {CN} ;\,\overrightarrow {PA} + \overrightarrow {PB} = \vec 0\).

a) \(\overrightarrow {PM} ,\,\overrightarrow {PN} \) theo \(\overrightarrow {AB} ,\,\overrightarrow {AC} \).

b) Chứng minh M, N, P thẳng hàng.

Xem đáp án » 13/07/2024 5,038

Câu 6:

Cho đường tròn (O; R), đường kính AB và tiếp tuyến Ax. Từ điểm C thuộc Ax, kẻ tiếp tuyến thứ hai CD với đường tròn (O) (D là tiếp điểm). Gọi giao điểm của CO và AD là I.

a) Chứng minh: CO AD.

b) Gọi giao điểm của CB và đường tròn (O) là E (E ≠ B). Chứng minh CE.CB = CI.CO.

c) Chứng minh: Trực tâm H của tam giác CAD di động trên đường cố định khi điểm C di chuyển trên Ax.

Xem đáp án » 13/07/2024 4,166

Câu 7:

Cho đường tròn (O), đường kính AB. Trên tia tiếp tuyến Ax của đường tròn lấy điểm M (M ≠ A), từ M vẽ tiếp tuyến thứ hai MC với đường tròn (O) (C là tiếp điểm). Kẻ CH vuông góc với AB (H AB). MB cắt đường tròn (O) tại điểm Q (Q ≠ B) và cắt CH tại N. Gọi I là giao điểm của MO và AC.

a) Chứng minh AIQM là tứ giác nội tiếp.

b) Chứng minh OM // BC.

c) Chứng minh tỉ số \(\frac{{CH}}{{CN}}\) không đổi khi M di động trên tia Ax (M ≠ A).

Xem đáp án » 13/07/2024 4,043

Bình luận


Bình luận
Đăng ký thi VIP

VIP 1 - Luyện 1 môn của 1 lớp

  • Được thi tất cả đề của môn bạn đăng ký có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi đáp với đội ngũ chuyên môn với những vấn đề chưa nắm rõ của môn bạn đang quan tâm.

Lớp đăng ký:

Môn đăng ký:

Đặt mua

VIP 2 - Combo tất cả các môn của 1 lớp

  • Được thi tất cả đề của tất cả các môn (Toán, Lí, Hóa, Anh, Văn,...) trong lớp bạn đăng ký có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi đáp với đội ngũ chuyên môn với tất cả những vấn đề chưa nắm rõ.
  • Ẩn tất cả các quảng cáo trên Website

Lớp đăng ký:

Đặt mua

VIP 3 - Combo tất cả các môn tất cả các lớp

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi đáp với đội ngũ chuyên môn với tất cả những vấn đề chưa nắm rõ.
  • Ẩn tất cả các quảng cáo trên Website

Bạn sẽ được luyện tất cả các môn của tất cả các lớp.

Đặt mua

tailieugiaovien.com.vn