Câu hỏi:

13/07/2024 6,110

Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH. Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC).

a) Chứng minh tứ giác ADHE là hình chữ nhật.

b) Gọi I là trung điểm của đoạn thẳng HC. Gọi K là điểm đối xứng với điểm A qua điểm I. Chứng minh rằng AC // HK.

c) Chứng minh tứ giác DECK là hình thang cân.

d) Gọi O là giao điểm của DE và AH. Gọi M là giao điểm của AI và CO. Chứng minh \(AM = \frac{1}{3}AK\).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Tứ giác ADHE, có:

\[\widehat {DAE} = 90^\circ \] (do tam giác ABC vuông tại A);

\[\widehat {ADH} = 90^\circ \] (do HD AB tại D);

\[\widehat {AEH} = 90^\circ \] (do HE AC tại E).

Vậy tứ giác ADHE là hình chữ nhật.

b) Ta có K là điểm đối xứng của A qua I (giả thiết).

Suy ra I là trung điểm của AK.

Mà I cũng là trung điểm của HC (giả thiết).

Do đó tứ giác AHKC là hình bình hành.

Vậy AC // HK.

c) Xét ∆DHE và ∆AEH, có:

HE chung;

\(\widehat {DHE} = \widehat {AEH} = 90^\circ \);

DH = AE (ADHE là hình chữ nhật).

Do đó ∆DHE = ∆AEH (c.g.c).

Suy ra \(\widehat {HDE} = \widehat {HAE}\) (cặp cạnh tương ứng).

Mà \(\widehat {HKC} = \widehat {HAC}\) (do tứ giác AHKC là hình bình hành).

Do đó \(\widehat {HDE} = \widehat {HKC}\).

Mà AC // DK (chứng minh trên).

Vậy tứ giác DECK là hình thang cân.

d) Tam giác ACH có các đường trung tuyến AI, CO cắt nhau tại M.

Suy ra M là trọng tâm của tam giác ACH.

Do đó \(AM = \frac{2}{3}AI\).

Mà \(AI = \frac{1}{2}AK\) (do I là trung điểm AK).

Suy ra \(AM = \frac{2}{3}AI = \frac{2}{3}.\frac{1}{2}AK = \frac{1}{3}AK\).

Vậy \(AM = \frac{1}{3}AK\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC. Gọi H là điểm đối xứng với B qua G với G là trọng tâm tam giác. Chứng minh:

a) \(\overrightarrow {AH} = \frac{2}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} ;\,\overrightarrow {CH} = - \frac{1}{3}\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} \).

b) \(\overrightarrow {MH} = \frac{1}{6}\overrightarrow {AC} - \frac{5}{6}\overrightarrow {AB} \), với M là trung điểm BC.

Xem đáp án » 13/07/2024 18,781

Câu 2:

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB và O là 1 điểm tùy ý.

a) Chứng minh rằng: \(\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} = \vec 0\).

b) Chứng minh rằng \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OM} + \overrightarrow {ON} + \overrightarrow {OP} \).

Xem đáp án » 13/07/2024 14,449

Câu 3:

Cho hai điểm A(3; –5), B(1; 0).

a) Tìm tọa độ điểm C sao cho \[\overrightarrow {OC} = - 3\overrightarrow {AB} \].

b) Tìm điểm D đối xứng của A qua C.

c) Tìm điểm M chia đoạn AB theo tỉ số k = –3.

Xem đáp án » 13/07/2024 12,171

Câu 4:

Đổi: 4 giờ 30 phút = … giờ.

Xem đáp án » 13/07/2024 11,957

Câu 5:

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, SA = SB = SD = a, \[\widehat {BAD} = 60^\circ \]. Góc giữa đường thẳng SA và mặt phẳng (SCD) bằng

Xem đáp án » 22/03/2023 9,753

Câu 6:

Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a, có \(\widehat {BAD} = 60^\circ \)\(SA = SB = SD = \frac{{a\sqrt 3 }}{2}\).

a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC.

b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD).

c) Chứng minh SB vuông góc với BC.

d) Gọi φ là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính tanφ.

Xem đáp án » 13/07/2024 8,978

Câu 7:

Cho tam giác ABC. I là điểm trên cạnh BC sao cho 2CI = 3BI; F là điểm trên BC sao cho 5FB = 2FC.

a) Tính \(\overrightarrow {AI} ,\,\overrightarrow {AF} \) theo \(\overrightarrow {AB} ,\,\overrightarrow {AC} \).

b) G là trọng tâm tam giác. Tính \(\overrightarrow {AG} \) theo \(\overrightarrow {AI} ,\,\overrightarrow {AF} \).

Xem đáp án » 13/07/2024 8,199

Bình luận


Bình luận