Câu hỏi:

21/03/2023 2,629 Lưu

Cho tam giác ABC có A’, B’, C’ lần lượt là trung điểm của các cạnh BC, CA, AB. Khẳng định nào sau đây là sai?

A. \(\overrightarrow {BC'} = \overrightarrow {C'A} = \overrightarrow {A'B'} \);
B. \(\overrightarrow {B'C'} = \overrightarrow {A'B} = \overrightarrow {CA'} \);
C. \(\overrightarrow {C'A'} = \frac{1}{2}\overrightarrow {AC} \);
D. \(\overrightarrow {BA} + \overrightarrow {AB'} = \overrightarrow {AA'} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Media VietJack

Tam giác ABC có A’B’ là đường trung bình.

Suy ra A’B’ = BC’ = C’A.

\(\overrightarrow {BC'} ,\,\overrightarrow {C'A} ,\,\overrightarrow {A'B'} \) cùng phương với nhau.

Do đó \(\overrightarrow {BC'} = \overrightarrow {C'A} = \overrightarrow {A'B'} \).

Vì vậy phương án A đúng.

Tương tự như trên, ta có \(\overrightarrow {B'C'} = \overrightarrow {A'B} = \overrightarrow {CA'} \).

Do đó phương án B đúng.

Tam giác ABC có C’A’ là đường trung bình.

Suy ra \(C'A' = \frac{1}{2}AC\).

\(\overrightarrow {C'A'} ,\,\overrightarrow {AC} \) cùng phương.

Do đó \(\overrightarrow {C'A'} = \frac{1}{2}\overrightarrow {AC} \).

Vì vậy phương án C đúng.

Vậy phương án D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Gọi N là trung điểm AC.

Do H là điểm đối xứng của B qua G.

Suy ra G là trung điểm của BH.

Do đó \(GH = BG = \frac{2}{3}BN = 2GN\) (do G là trọng tâm tam giác ABC).

Vì vậy N là trung điểm GH (do 4 điểm B, G, N, H thẳng hàng).

Suy ra GN = NH.

Ta có \(\overrightarrow {AH} = \overrightarrow {AN} + \overrightarrow {NH} = \overrightarrow {AN} + \overrightarrow {GN} \)

\( = \overrightarrow {AN} + \frac{1}{3}\overrightarrow {BN} = \overrightarrow {AN} + \frac{1}{3}\left( {\overrightarrow {BA} + \overrightarrow {AN} } \right)\)

\[ = \frac{4}{3}\overrightarrow {AN} - \frac{1}{3}\overrightarrow {AB} = \frac{4}{3}\left( {\frac{1}{2}\overrightarrow {AC} } \right) - \frac{1}{3}\overrightarrow {AB} \]

\[ = \frac{2}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} \].

Ta có \(\overrightarrow {CH} = \overrightarrow {CN} + \overrightarrow {NH} = \overrightarrow {CN} + \overrightarrow {GN} \)

\( = \overrightarrow {CN} + \frac{1}{3}\overrightarrow {BN} = \overrightarrow {CN} + \frac{1}{3}\left( {\overrightarrow {BA} + \overrightarrow {AN} } \right)\)

\[ = \overrightarrow {CN} - \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AN} = - \frac{1}{2}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}.\frac{1}{2}\overrightarrow {AC} \]

\( = - \frac{1}{3}\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} \).

Vậy ta có điều phải chứng minh.

b) \(\overrightarrow {MH} = \overrightarrow {MB} + \overrightarrow {BH} = \frac{1}{2}\overrightarrow {CB} + \overrightarrow {BA} + \overrightarrow {AH} \)

\( = \frac{1}{2}\left( {\overrightarrow {CA} + \overrightarrow {AB} } \right) - \overrightarrow {AB} + \frac{2}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} \)

\( = - \frac{5}{6}\overrightarrow {AB} + \frac{1}{6}\overrightarrow {AC} \).

Vậy ta có điều phải chứng minh.

Lời giải

Lời giải

Media VietJack

a) Ta có \(VT = \overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} \) (do M, N, P lần lượt là trung điểm của BC, CA, AB).

\( = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) + \frac{1}{2}\left( {\overrightarrow {BA} + \overrightarrow {BC} } \right) + \frac{1}{2}\left( {\overrightarrow {CA} + \overrightarrow {CB} } \right)\)

\( = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {BA} } \right) + \frac{1}{2}\left( {\overrightarrow {CB} + \overrightarrow {BC} } \right) + \frac{1}{2}\left( {\overrightarrow {CA} + \overrightarrow {AC} } \right)\)

\( = \frac{1}{2}.\vec 0 + \frac{1}{2}.\vec 0 + \frac{1}{2}.\vec 0 = \vec 0 = VP\).

Vậy ta có điều phải chứng minh.

b) Ta có \(VT = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right) + \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OC} } \right) + \frac{1}{2}\left( {\overrightarrow {OB} + \overrightarrow {OC} } \right)\)

\( = \frac{1}{2}.2\overrightarrow {OP} + \frac{1}{2}.2\overrightarrow {ON} + \frac{1}{2}.2\overrightarrow {OM} \)

\( = \overrightarrow {OP} + \overrightarrow {ON} + \overrightarrow {OM} = VP\).

Vậy ta có điều phải chứng minh.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP