Câu hỏi:

21/03/2023 1,433

Một chiếc cổng hình parabol bao gồm một cửa chính hình chữ nhật ở giữa và hai cánh cửa phụ hai bên như hình vẽ. Biết chiều cao cổng parabol là 4 m còn kích thước cửa ở giữa là 3 m x 6 m. Hãy tính khoảng cách giữa hai điểm A và B.
Media VietJack

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn hệ trục tọa độ Oxy như hình vẽ.

Media VietJack

Phương trình parabol có dạng (P): y = ax2 + bx + c (a < 0).

Ta có G(0; 4) (P) c = 4.

Theo đề, ta có kích thước cửa ở giữa là 3 m x 6 m.

Suy ra E(3; 3), F(–3; 3).

Ta có \(\left\{ \begin{array}{l}E \in \left( P \right)\\F \in \left( P \right)\end{array} \right.\)

\( \Rightarrow \left\{ \begin{array}{l}9a + 3b + c = 3\\9a - 3b + c = 3\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}9a + 3b = - 1\\9a - 3b = - 1\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}18a = - 2\\b = \frac{{9a + 1}}{3}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{9}\\b = 0\end{array} \right.\)

So với điều kiện a < 0, ta nhận \(a = - \frac{1}{9}\).

Khi đó phương trình parabol (P): \(y = - \frac{1}{9}{x^2} + 4\).

Phương trình hoành độ giao điểm của (P) và trục Ox là: \( - \frac{1}{9}{x^2} + 4 = 0\)

x2 = 36

x = ±6.

Suy ra tọa độ A(–6; 0), B(6; 0).

Do đó AB = 12 m.

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC. Gọi H là điểm đối xứng với B qua G với G là trọng tâm tam giác. Chứng minh:

a) \(\overrightarrow {AH} = \frac{2}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} ;\,\overrightarrow {CH} = - \frac{1}{3}\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} \).

b) \(\overrightarrow {MH} = \frac{1}{6}\overrightarrow {AC} - \frac{5}{6}\overrightarrow {AB} \), với M là trung điểm BC.

Xem đáp án » 13/07/2024 16,732

Câu 2:

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB và O là 1 điểm tùy ý.

a) Chứng minh rằng: \(\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} = \vec 0\).

b) Chứng minh rằng \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OM} + \overrightarrow {ON} + \overrightarrow {OP} \).

Xem đáp án » 13/07/2024 12,684

Câu 3:

Đổi: 4 giờ 30 phút = … giờ.

Xem đáp án » 13/07/2024 11,414

Câu 4:

Cho hai điểm A(3; –5), B(1; 0).

a) Tìm tọa độ điểm C sao cho \[\overrightarrow {OC} = - 3\overrightarrow {AB} \].

b) Tìm điểm D đối xứng của A qua C.

c) Tìm điểm M chia đoạn AB theo tỉ số k = –3.

Xem đáp án » 13/07/2024 10,165

Câu 5:

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, SA = SB = SD = a, \[\widehat {BAD} = 60^\circ \]. Góc giữa đường thẳng SA và mặt phẳng (SCD) bằng

Xem đáp án » 22/03/2023 9,142

Câu 6:

Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a, có \(\widehat {BAD} = 60^\circ \)\(SA = SB = SD = \frac{{a\sqrt 3 }}{2}\).

a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC.

b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD).

c) Chứng minh SB vuông góc với BC.

d) Gọi φ là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính tanφ.

Xem đáp án » 13/07/2024 8,301

Câu 7:

Cho tam giác ABC, trên các đường thẳng BC, AC, AB lần lượt lấy các điểm M, N, P sao cho \(\overrightarrow {MB} = 3\overrightarrow {MC} ;\,\overrightarrow {NA} = 3\overrightarrow {CN} ;\,\overrightarrow {PA} + \overrightarrow {PB} = \vec 0\).

a) \(\overrightarrow {PM} ,\,\overrightarrow {PN} \) theo \(\overrightarrow {AB} ,\,\overrightarrow {AC} \).

b) Chứng minh M, N, P thẳng hàng.

Xem đáp án » 13/07/2024 7,699

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store