Câu hỏi:

21/03/2023 2,576

Một chiếc cổng hình parabol bao gồm một cửa chính hình chữ nhật ở giữa và hai cánh cửa phụ hai bên như hình vẽ. Biết chiều cao cổng parabol là 4 m còn kích thước cửa ở giữa là 3 m x 6 m. Hãy tính khoảng cách giữa hai điểm A và B.
Media VietJack

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn hệ trục tọa độ Oxy như hình vẽ.

Media VietJack

Phương trình parabol có dạng (P): y = ax2 + bx + c (a < 0).

Ta có G(0; 4) (P) c = 4.

Theo đề, ta có kích thước cửa ở giữa là 3 m x 6 m.

Suy ra E(3; 3), F(–3; 3).

Ta có \(\left\{ \begin{array}{l}E \in \left( P \right)\\F \in \left( P \right)\end{array} \right.\)

\( \Rightarrow \left\{ \begin{array}{l}9a + 3b + c = 3\\9a - 3b + c = 3\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}9a + 3b = - 1\\9a - 3b = - 1\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}18a = - 2\\b = \frac{{9a + 1}}{3}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{9}\\b = 0\end{array} \right.\)

So với điều kiện a < 0, ta nhận \(a = - \frac{1}{9}\).

Khi đó phương trình parabol (P): \(y = - \frac{1}{9}{x^2} + 4\).

Phương trình hoành độ giao điểm của (P) và trục Ox là: \( - \frac{1}{9}{x^2} + 4 = 0\)

x2 = 36

x = ±6.

Suy ra tọa độ A(–6; 0), B(6; 0).

Do đó AB = 12 m.

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC. Gọi H là điểm đối xứng với B qua G với G là trọng tâm tam giác. Chứng minh:

a) \(\overrightarrow {AH} = \frac{2}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} ;\,\overrightarrow {CH} = - \frac{1}{3}\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} \).

b) \(\overrightarrow {MH} = \frac{1}{6}\overrightarrow {AC} - \frac{5}{6}\overrightarrow {AB} \), với M là trung điểm BC.

Xem đáp án » 13/07/2024 18,742

Câu 2:

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB và O là 1 điểm tùy ý.

a) Chứng minh rằng: \(\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} = \vec 0\).

b) Chứng minh rằng \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OM} + \overrightarrow {ON} + \overrightarrow {OP} \).

Xem đáp án » 13/07/2024 14,361

Câu 3:

Cho hai điểm A(3; –5), B(1; 0).

a) Tìm tọa độ điểm C sao cho \[\overrightarrow {OC} = - 3\overrightarrow {AB} \].

b) Tìm điểm D đối xứng của A qua C.

c) Tìm điểm M chia đoạn AB theo tỉ số k = –3.

Xem đáp án » 13/07/2024 11,947

Câu 4:

Đổi: 4 giờ 30 phút = … giờ.

Xem đáp án » 13/07/2024 11,886

Câu 5:

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, SA = SB = SD = a, \[\widehat {BAD} = 60^\circ \]. Góc giữa đường thẳng SA và mặt phẳng (SCD) bằng

Xem đáp án » 22/03/2023 9,679

Câu 6:

Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a, có \(\widehat {BAD} = 60^\circ \)\(SA = SB = SD = \frac{{a\sqrt 3 }}{2}\).

a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC.

b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD).

c) Chứng minh SB vuông góc với BC.

d) Gọi φ là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính tanφ.

Xem đáp án » 13/07/2024 8,897

Câu 7:

Cho tam giác ABC. I là điểm trên cạnh BC sao cho 2CI = 3BI; F là điểm trên BC sao cho 5FB = 2FC.

a) Tính \(\overrightarrow {AI} ,\,\overrightarrow {AF} \) theo \(\overrightarrow {AB} ,\,\overrightarrow {AC} \).

b) G là trọng tâm tam giác. Tính \(\overrightarrow {AG} \) theo \(\overrightarrow {AI} ,\,\overrightarrow {AF} \).

Xem đáp án » 13/07/2024 8,183

Bình luận


Bình luận