Câu hỏi:
13/07/2024 7,566Cho tam giác ABC. I là điểm trên cạnh BC sao cho 2CI = 3BI; F là điểm trên BC sao cho 5FB = 2FC.
a) Tính \(\overrightarrow {AI} ,\,\overrightarrow {AF} \) theo \(\overrightarrow {AB} ,\,\overrightarrow {AC} \).
b) G là trọng tâm tam giác. Tính \(\overrightarrow {AG} \) theo \(\overrightarrow {AI} ,\,\overrightarrow {AF} \).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Ta có 2CI = 3BI
\( \Rightarrow 2\overrightarrow {CI} + 3\overrightarrow {BI} = \vec 0\)
\( \Leftrightarrow 2\left( {\overrightarrow {CA} + \overrightarrow {AI} } \right) + 3\left( {\overrightarrow {BA} + \overrightarrow {AI} } \right) = \vec 0\)
\( \Leftrightarrow 5\overrightarrow {AI} = 3\overrightarrow {AB} + 2\overrightarrow {AC} \) (1)
\( \Leftrightarrow \overrightarrow {AI} = \frac{3}{5}\overrightarrow {AB} + \frac{2}{5}\overrightarrow {AC} \).
Ta có 5FB = 2FC
\( \Rightarrow 5\overrightarrow {BF} - 2\overrightarrow {CF} = \vec 0\)
\( \Leftrightarrow 5\left( {\overrightarrow {BA} + \overrightarrow {AF} } \right) - 2\left( {\overrightarrow {CA} + \overrightarrow {AF} } \right) = \vec 0\)
\( \Leftrightarrow 3\overrightarrow {AF} = 5\overrightarrow {AB} - 2\overrightarrow {AC} \) (2)
\( \Leftrightarrow \overrightarrow {AF} = \frac{5}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {AC} \).
Vậy \(\overrightarrow {AI} = \frac{3}{5}\overrightarrow {AB} + \frac{2}{5}\overrightarrow {AC} \) và \(\overrightarrow {AF} = \frac{5}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {AC} \).
b) Gọi M là trung điểm của BC.
Suy ra \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} = 2.\frac{3}{2}.\overrightarrow {AG} = 3\overrightarrow {AG} \) (do G là trọng tâm của tam giác ABC nên \(AG = \frac{2}{3}AM\)).
Lấy (1) + (2) vế theo vế, ta được \(5\overrightarrow {AI} + 3\overrightarrow {AF} = 8\overrightarrow {AB} \).
\( \Leftrightarrow \overrightarrow {AB} = \frac{5}{8}\overrightarrow {AI} + \frac{3}{8}\overrightarrow {AF} \).
Từ (1), ta suy ra \[25\overrightarrow {AI} = 15\overrightarrow {AB} + 10\overrightarrow {AC} \] (3)
Từ (2), ta suy ra \(9\overrightarrow {AF} = 15\overrightarrow {AB} - 6\overrightarrow {AC} \) (4)
Lấy (3) – (4) vế theo vế, ta được \[16\overrightarrow {AC} = 25\overrightarrow {AI} - 9\overrightarrow {AF} \].
\( \Leftrightarrow \overrightarrow {AC} = \frac{{25}}{{16}}\overrightarrow {AI} - \frac{9}{{16}}\overrightarrow {AF} \).
Gọi M là trung điểm của BC.
Suy ra \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} = 2.\frac{3}{2}.\overrightarrow {AG} = 3\overrightarrow {AG} \) (do G là trọng tâm của tam giác ABC nên \(AG = \frac{2}{3}AM\)).
Do đó \(3\overrightarrow {AG} = \left( {\frac{5}{8}\overrightarrow {AI} + \frac{3}{8}\overrightarrow {AF} } \right) + \left( {\frac{{25}}{{16}}\overrightarrow {AI} - \frac{9}{{16}}\overrightarrow {AF} } \right) = \frac{{35}}{{16}}\overrightarrow {AI} - \frac{3}{{16}}\overrightarrow {AF} \).
Vậy \(\overrightarrow {AG} = \frac{{35}}{{48}}\overrightarrow {AI} - \frac{1}{{16}}\overrightarrow {AF} \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC. Gọi H là điểm đối xứng với B qua G với G là trọng tâm tam giác. Chứng minh:
a) \(\overrightarrow {AH} = \frac{2}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} ;\,\overrightarrow {CH} = - \frac{1}{3}\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} \).
b) \(\overrightarrow {MH} = \frac{1}{6}\overrightarrow {AC} - \frac{5}{6}\overrightarrow {AB} \), với M là trung điểm BC.
Câu 2:
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB và O là 1 điểm tùy ý.
a) Chứng minh rằng: \(\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} = \vec 0\).
b) Chứng minh rằng \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OM} + \overrightarrow {ON} + \overrightarrow {OP} \).
Câu 4:
Cho hai điểm A(3; –5), B(1; 0).
a) Tìm tọa độ điểm C sao cho \[\overrightarrow {OC} = - 3\overrightarrow {AB} \].
b) Tìm điểm D đối xứng của A qua C.
c) Tìm điểm M chia đoạn AB theo tỉ số k = –3.
Câu 5:
Câu 6:
Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a, có \(\widehat {BAD} = 60^\circ \) và \(SA = SB = SD = \frac{{a\sqrt 3 }}{2}\).
a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC.
b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD).
c) Chứng minh SB vuông góc với BC.
d) Gọi φ là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính tanφ.
Câu 7:
Cho tam giác ABC, trên các đường thẳng BC, AC, AB lần lượt lấy các điểm M, N, P sao cho \(\overrightarrow {MB} = 3\overrightarrow {MC} ;\,\overrightarrow {NA} = 3\overrightarrow {CN} ;\,\overrightarrow {PA} + \overrightarrow {PB} = \vec 0\).
a) \(\overrightarrow {PM} ,\,\overrightarrow {PN} \) theo \(\overrightarrow {AB} ,\,\overrightarrow {AC} \).
b) Chứng minh M, N, P thẳng hàng.
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!