a) Tìm giá trị nhỏ nhất của A = 2x2 – 8x + 1.
b) Tìm giá trị lớn nhất của B = –5x2 – 4x + 1.
c) Tìm giá trị nhỏ nhất của biểu thức: \(A = \frac{2}{{6x - 5 - 9{x^2}}}\).
a) Tìm giá trị nhỏ nhất của A = 2x2 – 8x + 1.
b) Tìm giá trị lớn nhất của B = –5x2 – 4x + 1.
c) Tìm giá trị nhỏ nhất của biểu thức: \(A = \frac{2}{{6x - 5 - 9{x^2}}}\).
Quảng cáo
Trả lời:
Lời giải
a) A = 2x2 – 8x + 1
= 2(x2 – 4x + 4) – 7
= 2(x – 2)2 – 7.
Ta có (x – 2)2 ≥ 0, với mọi x.
⇒ 2(x – 2)2 ≥ 0, với mọi x.
⇒ 2(x – 2)2 – 7 ≥ –7, với mọi x.
Dấu “=” xảy ra ⇔ x = 2.
Vậy giá trị nhỏ nhất của A bằng –7 khi và chỉ khi x = 2.
b) B = –5x2 – 4x + 1
\( = - 5\left( {{x^2} + \frac{4}{5}x + \frac{4}{{25}}} \right) + \frac{9}{5}\)
\( = - 5{\left( {x + \frac{2}{5}} \right)^2} + \frac{9}{5}\).
Ta có \({\left( {x + \frac{2}{5}} \right)^2} \ge 0\), với mọi x.
\( \Rightarrow - 5{\left( {x + \frac{2}{5}} \right)^2} \le 0\), với mọi x.
\( \Rightarrow - 5{\left( {x + \frac{2}{5}} \right)^2} + \frac{9}{5} \le \frac{9}{5}\), với mọi x.
Dấu “=” xảy ra ⇔ \(x = - \frac{2}{5}\).
Vậy giá trị lớn nhất của B bằng \(\frac{9}{5}\) khi và chỉ khi \(x = - \frac{2}{5}\).
c) \(A = \frac{2}{{6x - 5 - 9{x^2}}}\)
\( = \frac{2}{{ - 9\left( {{x^2} - \frac{2}{3}x + \frac{1}{9}} \right) - 4}}\)
\( = \frac{2}{{ - 9{{\left( {x - \frac{1}{3}} \right)}^2} - 4}}\).
Ta có \({\left( {x - \frac{1}{3}} \right)^2} \ge 0\), với mọi x.
\( \Rightarrow - 9{\left( {x - \frac{1}{3}} \right)^2} \le 0\), với mọi x.
\( \Rightarrow - 9{\left( {x - \frac{1}{3}} \right)^2} - 4 \le - 4\), với mọi x.
\( \Rightarrow \frac{1}{{ - 9{{\left( {x - \frac{1}{3}} \right)}^2} - 4}} \ge \frac{1}{{ - 4}}\), với mọi x.
\( \Rightarrow \frac{2}{{ - 9{{\left( {x - \frac{1}{3}} \right)}^2} - 4}} \ge \frac{2}{{ - 4}} = - \frac{1}{2}\), với mọi x.
Dấu “=” xảy ra ⇔ \(x = \frac{1}{3}\).
Vậy giá trị nhỏ nhất của A bằng \( - \frac{1}{2}\) khi và chỉ khi \(x = \frac{1}{3}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải

a) Gọi N là trung điểm AC.
Do H là điểm đối xứng của B qua G.
Suy ra G là trung điểm của BH.
Do đó \(GH = BG = \frac{2}{3}BN = 2GN\) (do G là trọng tâm tam giác ABC).
Vì vậy N là trung điểm GH (do 4 điểm B, G, N, H thẳng hàng).
Suy ra GN = NH.
Ta có \(\overrightarrow {AH} = \overrightarrow {AN} + \overrightarrow {NH} = \overrightarrow {AN} + \overrightarrow {GN} \)
\( = \overrightarrow {AN} + \frac{1}{3}\overrightarrow {BN} = \overrightarrow {AN} + \frac{1}{3}\left( {\overrightarrow {BA} + \overrightarrow {AN} } \right)\)
\[ = \frac{4}{3}\overrightarrow {AN} - \frac{1}{3}\overrightarrow {AB} = \frac{4}{3}\left( {\frac{1}{2}\overrightarrow {AC} } \right) - \frac{1}{3}\overrightarrow {AB} \]
\[ = \frac{2}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} \].
Ta có \(\overrightarrow {CH} = \overrightarrow {CN} + \overrightarrow {NH} = \overrightarrow {CN} + \overrightarrow {GN} \)
\( = \overrightarrow {CN} + \frac{1}{3}\overrightarrow {BN} = \overrightarrow {CN} + \frac{1}{3}\left( {\overrightarrow {BA} + \overrightarrow {AN} } \right)\)
\[ = \overrightarrow {CN} - \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AN} = - \frac{1}{2}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}.\frac{1}{2}\overrightarrow {AC} \]
\( = - \frac{1}{3}\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} \).
Vậy ta có điều phải chứng minh.
b) \(\overrightarrow {MH} = \overrightarrow {MB} + \overrightarrow {BH} = \frac{1}{2}\overrightarrow {CB} + \overrightarrow {BA} + \overrightarrow {AH} \)
\( = \frac{1}{2}\left( {\overrightarrow {CA} + \overrightarrow {AB} } \right) - \overrightarrow {AB} + \frac{2}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} \)
\( = - \frac{5}{6}\overrightarrow {AB} + \frac{1}{6}\overrightarrow {AC} \).
Vậy ta có điều phải chứng minh.
Lời giải
Lời giải

a) Ta có \(VT = \overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} \) (do M, N, P lần lượt là trung điểm của BC, CA, AB).
\( = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) + \frac{1}{2}\left( {\overrightarrow {BA} + \overrightarrow {BC} } \right) + \frac{1}{2}\left( {\overrightarrow {CA} + \overrightarrow {CB} } \right)\)
\( = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {BA} } \right) + \frac{1}{2}\left( {\overrightarrow {CB} + \overrightarrow {BC} } \right) + \frac{1}{2}\left( {\overrightarrow {CA} + \overrightarrow {AC} } \right)\)
\( = \frac{1}{2}.\vec 0 + \frac{1}{2}.\vec 0 + \frac{1}{2}.\vec 0 = \vec 0 = VP\).
Vậy ta có điều phải chứng minh.
b) Ta có \(VT = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right) + \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OC} } \right) + \frac{1}{2}\left( {\overrightarrow {OB} + \overrightarrow {OC} } \right)\)
\( = \frac{1}{2}.2\overrightarrow {OP} + \frac{1}{2}.2\overrightarrow {ON} + \frac{1}{2}.2\overrightarrow {OM} \)
\( = \overrightarrow {OP} + \overrightarrow {ON} + \overrightarrow {OM} = VP\).
Vậy ta có điều phải chứng minh.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.