Câu hỏi:

13/07/2024 1,009

Cho hình bình hành ABCD, qua C kẻ đường thẳng song song BD cắt AB ở E, cắt AD ở F.

a) Tứ giác BECD là hình gì? Vì sao?

b) Chứng minh 3 đường thẳng AC, BF, DE đồng quy (cùng đi qua 1 điểm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Tứ giác BECD là hình bình hành vì BE // CD (giả thiết) và CE // BD (giả thiết).

b) Ta có DF // BC (giả thiết) và BD // CF (giả thiết).

Suy ra BCFD là hình bình hành.

Do đó CF = BD   (1)

Lại có BECD là hình bình hành (chứng minh trên).

Suy ra CE = BD   (2)

Từ (1), (2), suy ra CF = CE.

Do đó CA là đường trung tuyến của tam giác AEF (*)

Ta có FD = BC (do BCFD là hình bình hành) và AD = BC (do ABCD là hình bình hành).

Suy ra DF = AD.

Do đó DE là đường trung tuyến của tam giác AEF   (**)

Chứng minh tương tự, ta được BF là đường trung tuyến của tam giác AEF   (***)

Từ (*), (**), (***), suy ra ba đường thẳng AC, BF, DE đồng quy tại trọng tâm của tam giác AEF.

Vậy ta có điều phải chứng minh.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, SA = SB = SD = a, \[\widehat {BAD} = 60^\circ \]. Góc giữa đường thẳng SA và mặt phẳng (SCD) bằng

Xem đáp án » 22/03/2023 20,911

Câu 2:

Cho tam giác ABC. Gọi H là điểm đối xứng với B qua G với G là trọng tâm tam giác. Chứng minh:

a) \(\overrightarrow {AH} = \frac{2}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} ;\,\overrightarrow {CH} = - \frac{1}{3}\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} \).

b) \(\overrightarrow {MH} = \frac{1}{6}\overrightarrow {AC} - \frac{5}{6}\overrightarrow {AB} \), với M là trung điểm BC.

Xem đáp án » 13/07/2024 19,502

Câu 3:

Đổi: 4 giờ 30 phút = … giờ.

Xem đáp án » 13/07/2024 18,114

Câu 4:

Cho hai điểm A(3; –5), B(1; 0).

a) Tìm tọa độ điểm C sao cho \[\overrightarrow {OC} = - 3\overrightarrow {AB} \].

b) Tìm điểm D đối xứng của A qua C.

c) Tìm điểm M chia đoạn AB theo tỉ số k = –3.

Xem đáp án » 13/07/2024 16,627

Câu 5:

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB và O là 1 điểm tùy ý.

a) Chứng minh rằng: \(\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} = \vec 0\).

b) Chứng minh rằng \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OM} + \overrightarrow {ON} + \overrightarrow {OP} \).

Xem đáp án » 13/07/2024 15,732

Câu 6:

Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a, có \(\widehat {BAD} = 60^\circ \)\(SA = SB = SD = \frac{{a\sqrt 3 }}{2}\).

a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC.

b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD).

c) Chứng minh SB vuông góc với BC.

d) Gọi φ là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính tanφ.

Xem đáp án » 13/07/2024 15,402

Câu 7:

Một bồn nước inox có dạng một hình trụ có chiều cao 1,75 m và diện tích đáy là 0,32 m2. Hỏi bồn nước này đựng đầy được bao nhiêu mét khối nước? (Bỏ qua bề dày của bồn nước).

Xem đáp án » 21/03/2023 12,889
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay