Câu hỏi:

19/08/2025 1,719 Lưu

1) Tìm hệ số của x12.y13 trong khai triển (2x + 3y)25.

2) Tìm hệ số của x12.y13 trong khai triển (x – y)25.

3) Viết số hạng thứ 9 của khai triển \({\left( {2x - \frac{1}{y}} \right)^{13}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

1) Ta có số hạng tổng quát: \(C_{25}^k.{\left( {2x} \right)^{25 - k}}.{\left( {3y} \right)^k} = C_{25}^k{.2^{25 - k}}{.3^k}.{x^{25 - k}}.{y^k}\).

Ta cần tìm hệ số của x12.y13.

Suy ra \(\left\{ \begin{array}{l}25 - k = 12\\k = 13\end{array} \right. \Leftrightarrow k = 13\).

Vậy hệ số của x12.y13 trong khai triển (2x + 3y)25\(C_{25}^{13}{.2^{12}}{.3^{13}}\).

2) Ta có số hạng tổng quát: \[C_{25}^k.{x^{25 - k}}.{\left( { - y} \right)^k} = C_{25}^k.{\left( { - 1} \right)^k}.{x^{25 - k}}.{y^k}\].

Ta cần tìm hệ số của x12.y13.

Suy ra \(\left\{ \begin{array}{l}25 - k = 12\\k = 13\end{array} \right. \Leftrightarrow k = 13\).

Vậy hệ số của x12.y13 trong khai triển (x – y)25\[C_{25}^{13}.{\left( { - 1} \right)^{13}} = - C_{25}^{13}\].

3) Ta có số hạng tổng quát: \(C_{13}^k.{\left( {2x} \right)^{13 - k}}.{\left( { - \frac{1}{y}} \right)^k} = C_{13}^k{.2^{13 - k}}.{x^{13 - k}}.\frac{{{{\left( { - 1} \right)}^k}}}{{{y^k}}}\).

Ta cần viết số hạng thứ 9.

Suy ra k = 8.

Vậy số hạng thứ 9 trong khai triển \({\left( {2x - \frac{1}{y}} \right)^{13}}\)\(C_{13}^8{.2^5}.{x^5}.\frac{{{{\left( { - 1} \right)}^8}}}{{{y^8}}} = 41184.\frac{{{x^5}}}{{{y^8}}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Gọi N là trung điểm AC.

Do H là điểm đối xứng của B qua G.

Suy ra G là trung điểm của BH.

Do đó \(GH = BG = \frac{2}{3}BN = 2GN\) (do G là trọng tâm tam giác ABC).

Vì vậy N là trung điểm GH (do 4 điểm B, G, N, H thẳng hàng).

Suy ra GN = NH.

Ta có \(\overrightarrow {AH} = \overrightarrow {AN} + \overrightarrow {NH} = \overrightarrow {AN} + \overrightarrow {GN} \)

\( = \overrightarrow {AN} + \frac{1}{3}\overrightarrow {BN} = \overrightarrow {AN} + \frac{1}{3}\left( {\overrightarrow {BA} + \overrightarrow {AN} } \right)\)

\[ = \frac{4}{3}\overrightarrow {AN} - \frac{1}{3}\overrightarrow {AB} = \frac{4}{3}\left( {\frac{1}{2}\overrightarrow {AC} } \right) - \frac{1}{3}\overrightarrow {AB} \]

\[ = \frac{2}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} \].

Ta có \(\overrightarrow {CH} = \overrightarrow {CN} + \overrightarrow {NH} = \overrightarrow {CN} + \overrightarrow {GN} \)

\( = \overrightarrow {CN} + \frac{1}{3}\overrightarrow {BN} = \overrightarrow {CN} + \frac{1}{3}\left( {\overrightarrow {BA} + \overrightarrow {AN} } \right)\)

\[ = \overrightarrow {CN} - \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AN} = - \frac{1}{2}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}.\frac{1}{2}\overrightarrow {AC} \]

\( = - \frac{1}{3}\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} \).

Vậy ta có điều phải chứng minh.

b) \(\overrightarrow {MH} = \overrightarrow {MB} + \overrightarrow {BH} = \frac{1}{2}\overrightarrow {CB} + \overrightarrow {BA} + \overrightarrow {AH} \)

\( = \frac{1}{2}\left( {\overrightarrow {CA} + \overrightarrow {AB} } \right) - \overrightarrow {AB} + \frac{2}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} \)

\( = - \frac{5}{6}\overrightarrow {AB} + \frac{1}{6}\overrightarrow {AC} \).

Vậy ta có điều phải chứng minh.

Lời giải

Lời giải

Media VietJack

a) Ta có \(VT = \overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} \) (do M, N, P lần lượt là trung điểm của BC, CA, AB).

\( = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) + \frac{1}{2}\left( {\overrightarrow {BA} + \overrightarrow {BC} } \right) + \frac{1}{2}\left( {\overrightarrow {CA} + \overrightarrow {CB} } \right)\)

\( = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {BA} } \right) + \frac{1}{2}\left( {\overrightarrow {CB} + \overrightarrow {BC} } \right) + \frac{1}{2}\left( {\overrightarrow {CA} + \overrightarrow {AC} } \right)\)

\( = \frac{1}{2}.\vec 0 + \frac{1}{2}.\vec 0 + \frac{1}{2}.\vec 0 = \vec 0 = VP\).

Vậy ta có điều phải chứng minh.

b) Ta có \(VT = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right) + \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OC} } \right) + \frac{1}{2}\left( {\overrightarrow {OB} + \overrightarrow {OC} } \right)\)

\( = \frac{1}{2}.2\overrightarrow {OP} + \frac{1}{2}.2\overrightarrow {ON} + \frac{1}{2}.2\overrightarrow {OM} \)

\( = \overrightarrow {OP} + \overrightarrow {ON} + \overrightarrow {OM} = VP\).

Vậy ta có điều phải chứng minh.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP