Câu hỏi:
13/07/2024 6,498
Cho hình vuông ABCD cạnh a, M bất kì. Chứng minh rằng các vectơ sau là vectơ không đổi. Tính độ dài của chúng:
a) \(2\overrightarrow {MA} - \overrightarrow {MB} - \overrightarrow {MC} \).
b) \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} - 3\overrightarrow {MD} \).
c) \(4\overrightarrow {MA} - 3\overrightarrow {MB} + \overrightarrow {MC} - 2\overrightarrow {MD} \).
Cho hình vuông ABCD cạnh a, M bất kì. Chứng minh rằng các vectơ sau là vectơ không đổi. Tính độ dài của chúng:
a) \(2\overrightarrow {MA} - \overrightarrow {MB} - \overrightarrow {MC} \).
b) \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} - 3\overrightarrow {MD} \).
c) \(4\overrightarrow {MA} - 3\overrightarrow {MB} + \overrightarrow {MC} - 2\overrightarrow {MD} \).
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) \(2\overrightarrow {MA} - \overrightarrow {MB} - \overrightarrow {MC} = \left( {\overrightarrow {MA} - \overrightarrow {MB} } \right) + \left( {\overrightarrow {MA} - \overrightarrow {MC} } \right)\)
\( = \overrightarrow {BA} + \overrightarrow {CA} = - \left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = - 2\overrightarrow {AI} \), với I là trung điểm BC.
Tam giác ABI vuông tại B: \(AI = \sqrt {A{B^2} + B{I^2}} = \sqrt {A{B^2} + {{\left( {\frac{{BC}}{2}} \right)}^2}} = \sqrt {{a^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 5 }}{2}\).
Ta có \(\left| {2\overrightarrow {MA} - \overrightarrow {MB} - \overrightarrow {MC} } \right| = \left| { - 2\overrightarrow {AI} } \right| = 2AI = 2.\frac{{a\sqrt 5 }}{2} = a\sqrt 5 \).
b) \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} - 3\overrightarrow {MD} = \overrightarrow {MA} - \overrightarrow {MD} + \overrightarrow {MB} - \overrightarrow {MD} + \overrightarrow {MC} - \overrightarrow {MD} \)
\( = \overrightarrow {DA} + \overrightarrow {DC} + \overrightarrow {DB} = 2\overrightarrow {DO} + \overrightarrow {DB} \), với O là tâm hình vuông ABCD.
\[ = \overrightarrow {DB} + \overrightarrow {DB} = 2\overrightarrow {DB} \].
Tam giác ABD vuông tại A: \(DB = \sqrt {A{B^2} + A{D^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \).
Ta có \[\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} - 3\overrightarrow {MD} } \right| = \left| {2\overrightarrow {DB} } \right| = 2DB = 2a\sqrt 2 \].
c) \(4\overrightarrow {MA} - 3\overrightarrow {MB} + \overrightarrow {MC} - 2\overrightarrow {MD} = 3\overrightarrow {MA} - 3\overrightarrow {MB} + \overrightarrow {MA} - \overrightarrow {MD} + \overrightarrow {MC} - \overrightarrow {MD} \)
\( = 3\overrightarrow {BA} + \overrightarrow {DA} + \overrightarrow {DC} = 3\overrightarrow {BA} + \overrightarrow {DA} - \overrightarrow {BA} = 2\overrightarrow {BA} + \overrightarrow {DA} \)
\( = \overrightarrow {BA} + \overrightarrow {BA} + \overrightarrow {CB} = \overrightarrow {BA} + \overrightarrow {CA} = - \left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = - 2\overrightarrow {AI} \).
Ta có \(\left| {4\overrightarrow {MA} - 3\overrightarrow {MB} + \overrightarrow {MC} - 2\overrightarrow {MD} } \right| = \left| { - 2\overrightarrow {AI} } \right| = 2AI = a\sqrt 5 \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Muốn đổi hỗn số thành số thập phân, ta làm các bước sau:
Bước 1: Đưa hỗn số thành phân số:
– Lấy phần nguyên nhân với mẫu số, kết quả nhận được cộng thêm tử số;
– Thay kết quả ở trên thành tử số mới, giữ nguyên mẫu số, ta được một phân số từ hỗn số đã cho.
Bước 2: Đưa mẫu số về 10; 100; 1000; … và thực hiện đổi phân số thập phân về số thập phân.
Ví dụ: Đổi các hỗn số \(5\frac{1}{{10}}\) và \(5\frac{3}{4}\) thành số thập phân.
Hướng dẫn giải
Ta có: \(5\frac{1}{{10}} = \frac{{5 \times 10 + 1}}{{10}} = \frac{{51}}{{10}} = 5,1\);
\(5\frac{3}{4} = \frac{{5 \times 4 + 3}}{4} = \frac{{23}}{4} = \frac{{23 \times 25}}{{4 \times 25}} = \frac{{575}}{{100}} = 5,75\).
Lời giải
Lời giải
Ta có E là trung điểm BC.
Suy ra \(CE = \frac{{BC}}{2} = \frac{a}{2}\).
Ta có AB = CD (do ABCD là hình vuông) và BE = CE (E là trung điểm BC).
Suy ra \(\sqrt {A{B^2} + B{E^2}} = \sqrt {C{D^2} + C{E^2}} \).
Do đó AE = DE.
Tam giác CDE vuông tại C: \(AE = DE = \sqrt {C{D^2} + C{E^2}} = \sqrt {{a^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 5 }}{2}\).
Ta có \(D{F^2} = \frac{{2D{A^2} + 2D{E^2} - A{E^2}}}{4} = \frac{{2{a^2} + 2{{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2}}}{4} = \frac{{13{a^2}}}{{16}}\).
Vậy \(DF = \frac{{a\sqrt {13} }}{4}\).
Do đó ta chọn phương án A.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.