Câu hỏi:

13/07/2024 943

Cho phương trình x2 – mx + m – 3 = 0.

a) Chứng minh rằng phương trình đã cho luôn có 2 nghiệm phân biệt x1, x2.

b) Tìm hệ thức liên hệ giữa 2 nghiệm x1, x2 mà không phụ thuộc vào m.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) ∆ = (–m)2 – 4(m – 3) = m2 – 4m + 12 = (m – 2)2 + 8.

Ta có (m – 2)2 ≥ 0, m ℝ.

(m – 2)2 + 8 ≥ 8 > 0, m ℝ.

∆ > 0, m ℝ.

Vậy phương trình đã cho luôn có 2 nghiệm phân biệt x1, x2.

b) Theo Viet: S = x1 + x2 = m và P = x1x2 = m – 3.

Suy ra x1 + x2 – x1x2 = m – m + 3 = 3.

Vậy hệ thức cần tìm là x1 + x2 – x1x2 = 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình vuông ABCD có cạnh bằng a. Gọi E là trung điểm cạnh BC, F là trung điểm cạnh AE. Tìm độ dài đoạn thẳng DF.

Xem đáp án » 22/03/2023 29,071

Câu 2:

Cách chuyển hỗn số thành số thập phân, ta làm như thế nào?

Xem đáp án » 13/07/2024 24,062

Câu 3:

Tính bán kính đường tròn ngoại tiếp tam giác ABC, biết AB = 10 và \[\tan \left( {A + B} \right) = \frac{1}{3}\].

Xem đáp án » 13/07/2024 10,258

Câu 4:

Hình vẽ bên là một hình vuông ABCD có chu vi 48 dm. Tính diện tích phần tô đậm?
Media VietJack

Xem đáp án » 13/07/2024 8,947

Câu 5:

Cho cấp số cộng (un) có số hạng tổng quát un = 3n – 1 (n ℕ*). Số hạng đầu u1 và công sai d là

Xem đáp án » 13/07/2024 7,406

Câu 6:

Cho hình vuông ABCD có cạnh bằng a. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. M là giao điểm của CE và DF.

a) Chứng minh tứ giác EFGH là hình vuông.

b) Chứng minh DF CE và ∆MAD cân.

c) Tính diện tích tam giác MDC theo a.

Xem đáp án » 13/07/2024 6,867

Câu 7:

Cho hình thoi ABCD có AB = BD. Gọi M, N lần lượt trên các cạnh AB, BC sao cho AM + NC = AD.

1) Chứng minh AM = BN.

2) Chứng minh ∆AMD = ∆BND.

3) Tính số đo các góc của ∆DMN.

Xem đáp án » 13/07/2024 6,698

Bình luận


Bình luận