Câu hỏi:

22/03/2023 882

Cho \[P = \frac{{2x + 2}}{{\sqrt x }} + \frac{{x\sqrt x - 1}}{{x - \sqrt x }} - \frac{{x\sqrt x + 1}}{{x + \sqrt x }}\,\,\,\left( {x > 0,\,x \ne 1} \right)\].

a) Rút gọn P.

b) So sánh P với 5.

c) Tìm x sao cho \(\frac{8}{P}\) nhận giá trị nguyên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) \[P = \frac{{2x + 2}}{{\sqrt x }} + \frac{{x\sqrt x - 1}}{{x - \sqrt x }} - \frac{{x\sqrt x + 1}}{{x + \sqrt x }}\]

\[ = \frac{{2x + 2}}{{\sqrt x }} + \frac{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)}} - \frac{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x + 1} \right)}}\]

\[ = \frac{{2x + 2}}{{\sqrt x }} + \frac{{x + \sqrt x + 1}}{{\sqrt x }} - \frac{{x - \sqrt x + 1}}{{\sqrt x }}\]

\[ = \frac{{2x + 2 + x + \sqrt x + 1 - \left( {x - \sqrt x + 1} \right)}}{{\sqrt x }}\]

\[ = \frac{{2x + 2 + 2\sqrt x }}{{\sqrt x }}\].

b) Ta có \(P - 5 = \frac{{2x + 2 + 2\sqrt x }}{{\sqrt x }} - 5 = \frac{{2x + 2 - 4\sqrt x + \sqrt x }}{{\sqrt x }}\)

\( = \frac{{2{{\left( {\sqrt x - 1} \right)}^2} + \sqrt x }}{{\sqrt x }} = \frac{{2{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x }} + 1 \ge 1 > 0,\,\forall x\).

Vậy P > 5.

c) \(\frac{8}{P} = \frac{{8\sqrt x }}{{2x + 2 + 2\sqrt x }} = \frac{{4\sqrt x }}{{x + 1 + \sqrt x }} = \frac{4}{{\sqrt x + \frac{1}{{\sqrt x }} + 1}}\).

Ta có \(\frac{8}{P}\) nhận giá trị nguyên \(4 \vdots \left( {\sqrt x + \frac{1}{{\sqrt x }} + 1} \right)\).

Ta có Ư(4) {±1; ±2; ±4}.

Ta có bảng sau:

Media VietJack

So với điều kiện ban đầu, ta nhận \(x \in \left\{ {\frac{{7 \pm 3\sqrt 5 }}{2}} \right\}\).

Vậy \(x \in \left\{ {\frac{{7 \pm 3\sqrt 5 }}{2}} \right\}\) thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Muốn đổi hỗn số thành số thập phân, ta làm các bước sau:

Bước 1: Đưa hỗn số thành phân số:

– Lấy phần nguyên nhân với mẫu số, kết quả nhận được cộng thêm tử số;

– Thay kết quả ở trên thành tử số mới, giữ nguyên mẫu số, ta được một phân số từ hỗn số đã cho.

Bước 2: Đưa mẫu số về 10; 100; 1000; … và thực hiện đổi phân số thập phân về số thập phân.

Ví dụ: Đổi các hỗn số \(5\frac{1}{{10}}\) và \(5\frac{3}{4}\) thành số thập phân.

Hướng dẫn giải

Ta có: \(5\frac{1}{{10}} = \frac{{5 \times 10 + 1}}{{10}} = \frac{{51}}{{10}} = 5,1\);

\(5\frac{3}{4} = \frac{{5 \times 4 + 3}}{4} = \frac{{23}}{4} = \frac{{23 \times 25}}{{4 \times 25}} = \frac{{575}}{{100}} = 5,75\).

Câu 2

Lời giải

Lời giải

Media VietJack

Ta có E là trung điểm BC.

Suy ra \(CE = \frac{{BC}}{2} = \frac{a}{2}\).

Ta có AB = CD (do ABCD là hình vuông) và BE = CE (E là trung điểm BC).

Suy ra \(\sqrt {A{B^2} + B{E^2}} = \sqrt {C{D^2} + C{E^2}} \).

Do đó AE = DE.

Tam giác CDE vuông tại C: \(AE = DE = \sqrt {C{D^2} + C{E^2}} = \sqrt {{a^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 5 }}{2}\).

Ta có \(D{F^2} = \frac{{2D{A^2} + 2D{E^2} - A{E^2}}}{4} = \frac{{2{a^2} + 2{{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2}}}{4} = \frac{{13{a^2}}}{{16}}\).

Vậy \(DF = \frac{{a\sqrt {13} }}{4}\).

Do đó ta chọn phương án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP