Câu hỏi:
13/07/2024 5,214
Cho (O; R) và 3 dây AB, AC, AD; gọi M và N lần lượt là hình chiếu của B trên các đường thẳng AC, AD. Chứng minh MN ≤ 2R.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Xét ∆BMC và ∆BND, có:
\[\widehat {BMC} = \widehat {BND} = 90^\circ \];
\(\widehat {BCM} = \widehat {BDN}\) (bốn điểm A, B, C, D cùng thuộc đường tròn (O; R)).
Do đó (g.g).
Suy ra \(\frac{{BM}}{{BN}} = \frac{{BC}}{{BD}}\) và \(\widehat {MBC} = \widehat {NBD}\).
Xét ∆BNM và ∆BDC, có:
\(\frac{{BM}}{{BC}} = \frac{{BN}}{{BD}}\) \(\left( {\frac{{BM}}{{BN}} = \frac{{BC}}{{BD}}} \right)\).
\(\widehat {MBN} = \widehat {CDB}\) (do \(\widehat {MBC} + \widehat {CBN} = \widehat {CBN} + \widehat {NBD}\)).
Do đó (c.g.c).
Suy ra \(\frac{{MN}}{{CD}} = \frac{{BN}}{{BD}} \le \frac{{BD}}{{BD}} = 1\).
Khi đó MN ≤ CD.
Mà CD ≤ 2R (CD là một dây của đường tròn (O; R)).
Vậy MN ≤ 2R (điều phải chứng minh).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Muốn đổi hỗn số thành số thập phân, ta làm các bước sau:
Bước 1: Đưa hỗn số thành phân số:
– Lấy phần nguyên nhân với mẫu số, kết quả nhận được cộng thêm tử số;
– Thay kết quả ở trên thành tử số mới, giữ nguyên mẫu số, ta được một phân số từ hỗn số đã cho.
Bước 2: Đưa mẫu số về 10; 100; 1000; … và thực hiện đổi phân số thập phân về số thập phân.
Ví dụ: Đổi các hỗn số \(5\frac{1}{{10}}\) và \(5\frac{3}{4}\) thành số thập phân.
Hướng dẫn giải
Ta có: \(5\frac{1}{{10}} = \frac{{5 \times 10 + 1}}{{10}} = \frac{{51}}{{10}} = 5,1\);
\(5\frac{3}{4} = \frac{{5 \times 4 + 3}}{4} = \frac{{23}}{4} = \frac{{23 \times 25}}{{4 \times 25}} = \frac{{575}}{{100}} = 5,75\).
Lời giải
Lời giải
Ta có E là trung điểm BC.
Suy ra \(CE = \frac{{BC}}{2} = \frac{a}{2}\).
Ta có AB = CD (do ABCD là hình vuông) và BE = CE (E là trung điểm BC).
Suy ra \(\sqrt {A{B^2} + B{E^2}} = \sqrt {C{D^2} + C{E^2}} \).
Do đó AE = DE.
Tam giác CDE vuông tại C: \(AE = DE = \sqrt {C{D^2} + C{E^2}} = \sqrt {{a^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 5 }}{2}\).
Ta có \(D{F^2} = \frac{{2D{A^2} + 2D{E^2} - A{E^2}}}{4} = \frac{{2{a^2} + 2{{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2}}}{4} = \frac{{13{a^2}}}{{16}}\).
Vậy \(DF = \frac{{a\sqrt {13} }}{4}\).
Do đó ta chọn phương án A.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.