Câu hỏi:

22/03/2023 2,580

Cho hình thang cân ABCD (AB // CD) có đường chéo BD chia hình thang thành hai tam giác cân: tam giác ABD cân tại A và tam giác BCD cân tại D. Tính các góc của hình thang cân đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Đặt \(x = \widehat {ADB}\,\,\left( {0^\circ < x < 90^\circ } \right)\).

Ta có tam giác ADB cân tại A. Suy ra \(\widehat {ABD} = \widehat {ADB} = x\).

Lại có AB // CD (do ABCD là hình thang cân).

Suy ra \(\widehat {ABD} = \widehat {BDC} = x\) (cặp góc so le trong).

Ta có ABCD là hình thang cân. Suy ra \(\widehat {ADC} = \widehat {DCB} = 2x\).

Ta có tam giác BCD cân tại D. Suy ra \(\widehat {DBC} = \widehat {BCD} = 2x\).

Tam giác BCD cân tại D có: \(\widehat {BDC} + 2\widehat {DCB} = 180^\circ \).

Suy ra x + 2.2x = 180°.

Do đó 5x = 180°.

Vì vậy x = 36°.

Ta có \(\widehat {ADC} = \widehat {BCD} = 2x = 2.36^\circ = 72^\circ \).

Ta có \(\widehat {DAB} + \widehat {ADC} = 180^\circ \) (do AB // CD và hai góc này là hai góc so le trong).

Suy ra \(\widehat {DAB} = \widehat {ABC} = 180^\circ - \widehat {ADC} = 180^\circ - 72^\circ = 108^\circ \).

Vậy hình thang cân ABCD có các góc là: \(\widehat A = \widehat B = 108^\circ ,\,\widehat C = \widehat D = 72^\circ \).

Do đó ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Muốn đổi hỗn số thành số thập phân, ta làm các bước sau:

Bước 1: Đưa hỗn số thành phân số:

– Lấy phần nguyên nhân với mẫu số, kết quả nhận được cộng thêm tử số;

– Thay kết quả ở trên thành tử số mới, giữ nguyên mẫu số, ta được một phân số từ hỗn số đã cho.

Bước 2: Đưa mẫu số về 10; 100; 1000; … và thực hiện đổi phân số thập phân về số thập phân.

Ví dụ: Đổi các hỗn số \(5\frac{1}{{10}}\) và \(5\frac{3}{4}\) thành số thập phân.

Hướng dẫn giải

Ta có: \(5\frac{1}{{10}} = \frac{{5 \times 10 + 1}}{{10}} = \frac{{51}}{{10}} = 5,1\);

\(5\frac{3}{4} = \frac{{5 \times 4 + 3}}{4} = \frac{{23}}{4} = \frac{{23 \times 25}}{{4 \times 25}} = \frac{{575}}{{100}} = 5,75\).

Câu 2

Lời giải

Lời giải

Media VietJack

Ta có E là trung điểm BC.

Suy ra \(CE = \frac{{BC}}{2} = \frac{a}{2}\).

Ta có AB = CD (do ABCD là hình vuông) và BE = CE (E là trung điểm BC).

Suy ra \(\sqrt {A{B^2} + B{E^2}} = \sqrt {C{D^2} + C{E^2}} \).

Do đó AE = DE.

Tam giác CDE vuông tại C: \(AE = DE = \sqrt {C{D^2} + C{E^2}} = \sqrt {{a^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 5 }}{2}\).

Ta có \(D{F^2} = \frac{{2D{A^2} + 2D{E^2} - A{E^2}}}{4} = \frac{{2{a^2} + 2{{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2}}}{4} = \frac{{13{a^2}}}{{16}}\).

Vậy \(DF = \frac{{a\sqrt {13} }}{4}\).

Do đó ta chọn phương án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP