Câu hỏi:

13/07/2024 2,571

Công ty Bao bì Dược cần sản xuất 3 loại hộp giấy: đựng thuốc B1, đựng cao Sao vàng, và đựng “Quy nhân sâm đại bổ hoàn”. Để sản xuất các loại hộp này, công ty dùng các tấm bìa có kích thước giống nhau. Mỗi tấm bìa có hai cách cắt khác nhau:

– Cách thứ nhất cắt được 3 hộp B1, 1 hộp cao Sao vàng và 6 hộp Quy sâm.

– Cách thứ hai cắt được 2 hộp B1, 3 hộp cao Sao vàng và 1 hộp Quy sâm.

Theo kế hoạch, số hộp Quy sâm phải có là 900 hộp, số hộp B1 tối thiểu là 900 hộp, số hộp cao Sao vàng tối thiểu là 1000 hộp. Cần phương án sao cho tổng số bìa phải dùng là ít nhất?

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Gọi x, y (x, y ≥ 0) lần lượt là số tấm bìa cắt theo cách thứ nhất, thứ hai.

Bài toán đưa đến tìm x, y ≥ 0 thỏa mãn hệ: \(\left\{ \begin{array}{l}3x + 2y \ge 900\\x + 3y \ge 1000\\6x + y = 900\end{array} \right.\) (1) sao cho L = x + y nhỏ nhất.

Vẽ d1: 3x + 2y = 900, d2: x + 3y = 1000, d3: 6x + y = 900 trên cùng một hệ trục tọa độ Oxy.

Tiếp theo, ta lấy điểm A(0; 900). Khi đó ta có: \(\left\{ \begin{array}{l}3.0 + 2.900 = 1800 \ge 900\\0 + 3.900 = 2700 \ge 1000\\6.0 + 900 = 900\end{array} \right.\) (đúng).

Suy ra miền nghiệm của hệ (1) là một phần đường thẳng d3 được tô màu như hình vẽ.

Media VietJack

Ta có giao điểm của d3 và Oy là A(0; 900) và giao điểm của d3 và d2 là B(100; 300).

Từ miền nghiệm, ta thấy L nhỏ nhất khi (x; y) là một trong hai điểm A(0; 900) và B(100; 300).

L(0; 900) = 0 + 900 = 900.

L(100; 300) = 100 + 300 = 400.

Do đó L nhỏ nhất khi x = 100, y = 300.

Vậy người ta cần cắt 100 tấm bìa theo cách thứ nhất, 300 tấm bìa theo cách thứ hai thì tổng số bìa phải dùng là ít nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình vuông ABCD có cạnh bằng a. Gọi E là trung điểm cạnh BC, F là trung điểm cạnh AE. Tìm độ dài đoạn thẳng DF.

Xem đáp án » 22/03/2023 29,020

Câu 2:

Cách chuyển hỗn số thành số thập phân, ta làm như thế nào?

Xem đáp án » 13/07/2024 23,885

Câu 3:

Tính bán kính đường tròn ngoại tiếp tam giác ABC, biết AB = 10 và \[\tan \left( {A + B} \right) = \frac{1}{3}\].

Xem đáp án » 13/07/2024 10,180

Câu 4:

Hình vẽ bên là một hình vuông ABCD có chu vi 48 dm. Tính diện tích phần tô đậm?
Media VietJack

Xem đáp án » 13/07/2024 8,670

Câu 5:

Cho cấp số cộng (un) có số hạng tổng quát un = 3n – 1 (n ℕ*). Số hạng đầu u1 và công sai d là

Xem đáp án » 13/07/2024 7,306

Câu 6:

Cho hình vuông ABCD có cạnh bằng a. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. M là giao điểm của CE và DF.

a) Chứng minh tứ giác EFGH là hình vuông.

b) Chứng minh DF CE và ∆MAD cân.

c) Tính diện tích tam giác MDC theo a.

Xem đáp án » 13/07/2024 6,737

Câu 7:

Cho hình thoi ABCD có AB = BD. Gọi M, N lần lượt trên các cạnh AB, BC sao cho AM + NC = AD.

1) Chứng minh AM = BN.

2) Chứng minh ∆AMD = ∆BND.

3) Tính số đo các góc của ∆DMN.

Xem đáp án » 13/07/2024 6,654

Bình luận


Bình luận