Câu hỏi:
13/07/2024 2,411Công ty Bao bì Dược cần sản xuất 3 loại hộp giấy: đựng thuốc B1, đựng cao Sao vàng, và đựng “Quy nhân sâm đại bổ hoàn”. Để sản xuất các loại hộp này, công ty dùng các tấm bìa có kích thước giống nhau. Mỗi tấm bìa có hai cách cắt khác nhau:
– Cách thứ nhất cắt được 3 hộp B1, 1 hộp cao Sao vàng và 6 hộp Quy sâm.
– Cách thứ hai cắt được 2 hộp B1, 3 hộp cao Sao vàng và 1 hộp Quy sâm.
Theo kế hoạch, số hộp Quy sâm phải có là 900 hộp, số hộp B1 tối thiểu là 900 hộp, số hộp cao Sao vàng tối thiểu là 1000 hộp. Cần phương án sao cho tổng số bìa phải dùng là ít nhất?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Gọi x, y (x, y ≥ 0) lần lượt là số tấm bìa cắt theo cách thứ nhất, thứ hai.
Bài toán đưa đến tìm x, y ≥ 0 thỏa mãn hệ: \(\left\{ \begin{array}{l}3x + 2y \ge 900\\x + 3y \ge 1000\\6x + y = 900\end{array} \right.\) (1) sao cho L = x + y nhỏ nhất.
Vẽ d1: 3x + 2y = 900, d2: x + 3y = 1000, d3: 6x + y = 900 trên cùng một hệ trục tọa độ Oxy.
Tiếp theo, ta lấy điểm A(0; 900). Khi đó ta có: \(\left\{ \begin{array}{l}3.0 + 2.900 = 1800 \ge 900\\0 + 3.900 = 2700 \ge 1000\\6.0 + 900 = 900\end{array} \right.\) (đúng).
Suy ra miền nghiệm của hệ (1) là một phần đường thẳng d3 được tô màu như hình vẽ.
Ta có giao điểm của d3 và Oy là A(0; 900) và giao điểm của d3 và d2 là B(100; 300).
Từ miền nghiệm, ta thấy L nhỏ nhất khi (x; y) là một trong hai điểm A(0; 900) và B(100; 300).
L(0; 900) = 0 + 900 = 900.
L(100; 300) = 100 + 300 = 400.
Do đó L nhỏ nhất khi x = 100, y = 300.
Vậy người ta cần cắt 100 tấm bìa theo cách thứ nhất, 300 tấm bìa theo cách thứ hai thì tổng số bìa phải dùng là ít nhất.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình vuông ABCD có cạnh bằng a. Gọi E là trung điểm cạnh BC, F là trung điểm cạnh AE. Tìm độ dài đoạn thẳng DF.
Câu 3:
Câu 4:
Câu 5:
Cho hình thoi ABCD có AB = BD. Gọi M, N lần lượt trên các cạnh AB, BC sao cho AM + NC = AD.
1) Chứng minh AM = BN.
2) Chứng minh ∆AMD = ∆BND.
3) Tính số đo các góc của ∆DMN.
Câu 6:
Cho hình vuông ABCD có cạnh bằng a. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. M là giao điểm của CE và DF.
a) Chứng minh tứ giác EFGH là hình vuông.
b) Chứng minh DF ⊥ CE và ∆MAD cân.
c) Tính diện tích tam giác MDC theo a.
Câu 7:
Cho tam giác nhọn ABC (AB < AC) nội tiếp trong đường tròn (O). Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng BC tại M.
a) Chứng minh MA2 = MB.MC.
b) Vẽ đường cao BD của tam giác ABC. Đường thẳng qua D và song song với MA cắt AB tại E. Chứng minh tứ giác BCDE nội tiếp và xác định tâm O’ của đường tròn ngoại tiếp.
c) Tia OO’ cắt đường tròn (O) tại N. Chứng minh AN là tia phân giác của góc BAC.
d) Gọi I, K lần lượt là giao điểm của AN với BD và CE. Tìm điều kiện của tam giác ABC để có \[\frac{{IB}}{{ID}}.\frac{{KC}}{{KE}} = \frac{{IB}}{{ID}} + \frac{{KC}}{{KE}}\].
về câu hỏi!