Câu hỏi:
13/07/2024 2,776Cho nửa đường tròn (O) đường kính CD. Vẽ các tiếp tuyến Cx, Dy (Cx, Dy và nửa đường tròn (O) thuộc cùng một nửa mặt phẳng bờ CD). Lấy điểm M tùy ý trên nửa đường tròn trên. Tiếp tuyến tại M cắt Cx, Dy lần lượt tại A, B.
a) Chứng minh ∆OAB vuông tại O.
b) Chứng minh AB = AC + BD.
c) Chứng minh CD là tiếp tuyến của đường tròn đường kính AB.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).
Quảng cáo
Trả lời:
Lời giải
a) Vì AM, AC là hai tiếp tuyến của (O) nên ta có OA là tia phân giác của \(\widehat {COM}\).
Chứng minh tương tự, ta được OB là tia phân giác của \(\widehat {MOD}\).
Ta có \(\widehat {COM} + \widehat {MOD} = 180^\circ \) (hai góc kề bù).
\( \Leftrightarrow 2\widehat {AOM} + 2\widehat {MOB} = 180^\circ \)
\( \Leftrightarrow 2\left( {\widehat {AOM} + \widehat {MOB}} \right) = 180^\circ \)
\( \Leftrightarrow \widehat {AOM} + \widehat {MOB} = \frac{{180^\circ }}{2}\)
\( \Leftrightarrow \widehat {AOB} = 90^\circ \).
Vậy tam giác AOB vuông tại O.
b) Theo tính chất hai tiếp tuyến cắt nhau, ta có AC = AM và BM = BD.
Ta có AB = AM + MB = AC + BD.
Vậy ta có điều phải chứng minh.
c) Gọi I là trung điểm của AB.
Suy ra I là tâm của đường tròn đường kính AB.
Ta có \(\widehat {AOB} = 90^\circ \) (chứng minh trên).
Suy ra O nằm trên đường tròn đường kính AB.
Ta có CA ⊥ CD và BD ⊥ CD (AC, BD là tiếp tuyến của đường tròn (O)).
Suy ra CA // BD.
Do đó ABDC là hình thang.
Hình thang ABDC có O, I lần lượt là trung điểm của CD và AB.
Suy ra OI là đường trung bình của hình thang ABDC.
Do đó OI // AC.
Mà AC ⊥ CD (chứng minh trên).
Suy ra OI ⊥ CD.
Vậy CD là tiếp tuyến của đường tròn đường kính AB.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình vuông ABCD có cạnh bằng a. Gọi E là trung điểm cạnh BC, F là trung điểm cạnh AE. Tìm độ dài đoạn thẳng DF.
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho hình vuông ABCD có cạnh bằng a. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. M là giao điểm của CE và DF.
a) Chứng minh tứ giác EFGH là hình vuông.
b) Chứng minh DF ⊥ CE và ∆MAD cân.
c) Tính diện tích tam giác MDC theo a.
Câu 7:
Cho hình thoi ABCD có AB = BD. Gọi M, N lần lượt trên các cạnh AB, BC sao cho AM + NC = AD.
1) Chứng minh AM = BN.
2) Chứng minh ∆AMD = ∆BND.
3) Tính số đo các góc của ∆DMN.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
về câu hỏi!