Câu hỏi:
13/07/2024 4,200Cho nửa đường tròn (O) đường kính CD. Vẽ các tiếp tuyến Cx, Dy (Cx, Dy và nửa đường tròn (O) thuộc cùng một nửa mặt phẳng bờ CD). Lấy điểm M tùy ý trên nửa đường tròn trên. Tiếp tuyến tại M cắt Cx, Dy lần lượt tại A, B.
a) Chứng minh ∆OAB vuông tại O.
b) Chứng minh AB = AC + BD.
c) Chứng minh CD là tiếp tuyến của đường tròn đường kính AB.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Vì AM, AC là hai tiếp tuyến của (O) nên ta có OA là tia phân giác của \(\widehat {COM}\).
Chứng minh tương tự, ta được OB là tia phân giác của \(\widehat {MOD}\).
Ta có \(\widehat {COM} + \widehat {MOD} = 180^\circ \) (hai góc kề bù).
\( \Leftrightarrow 2\widehat {AOM} + 2\widehat {MOB} = 180^\circ \)
\( \Leftrightarrow 2\left( {\widehat {AOM} + \widehat {MOB}} \right) = 180^\circ \)
\( \Leftrightarrow \widehat {AOM} + \widehat {MOB} = \frac{{180^\circ }}{2}\)
\( \Leftrightarrow \widehat {AOB} = 90^\circ \).
Vậy tam giác AOB vuông tại O.
b) Theo tính chất hai tiếp tuyến cắt nhau, ta có AC = AM và BM = BD.
Ta có AB = AM + MB = AC + BD.
Vậy ta có điều phải chứng minh.
c) Gọi I là trung điểm của AB.
Suy ra I là tâm của đường tròn đường kính AB.
Ta có \(\widehat {AOB} = 90^\circ \) (chứng minh trên).
Suy ra O nằm trên đường tròn đường kính AB.
Ta có CA ⊥ CD và BD ⊥ CD (AC, BD là tiếp tuyến của đường tròn (O)).
Suy ra CA // BD.
Do đó ABDC là hình thang.
Hình thang ABDC có O, I lần lượt là trung điểm của CD và AB.
Suy ra OI là đường trung bình của hình thang ABDC.
Do đó OI // AC.
Mà AC ⊥ CD (chứng minh trên).
Suy ra OI ⊥ CD.
Vậy CD là tiếp tuyến của đường tròn đường kính AB.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Muốn đổi hỗn số thành số thập phân, ta làm các bước sau:
Bước 1: Đưa hỗn số thành phân số:
– Lấy phần nguyên nhân với mẫu số, kết quả nhận được cộng thêm tử số;
– Thay kết quả ở trên thành tử số mới, giữ nguyên mẫu số, ta được một phân số từ hỗn số đã cho.
Bước 2: Đưa mẫu số về 10; 100; 1000; … và thực hiện đổi phân số thập phân về số thập phân.
Ví dụ: Đổi các hỗn số \(5\frac{1}{{10}}\) và \(5\frac{3}{4}\) thành số thập phân.
Hướng dẫn giải
Ta có: \(5\frac{1}{{10}} = \frac{{5 \times 10 + 1}}{{10}} = \frac{{51}}{{10}} = 5,1\);
\(5\frac{3}{4} = \frac{{5 \times 4 + 3}}{4} = \frac{{23}}{4} = \frac{{23 \times 25}}{{4 \times 25}} = \frac{{575}}{{100}} = 5,75\).
Lời giải
Lời giải
Ta có E là trung điểm BC.
Suy ra \(CE = \frac{{BC}}{2} = \frac{a}{2}\).
Ta có AB = CD (do ABCD là hình vuông) và BE = CE (E là trung điểm BC).
Suy ra \(\sqrt {A{B^2} + B{E^2}} = \sqrt {C{D^2} + C{E^2}} \).
Do đó AE = DE.
Tam giác CDE vuông tại C: \(AE = DE = \sqrt {C{D^2} + C{E^2}} = \sqrt {{a^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 5 }}{2}\).
Ta có \(D{F^2} = \frac{{2D{A^2} + 2D{E^2} - A{E^2}}}{4} = \frac{{2{a^2} + 2{{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2}}}{4} = \frac{{13{a^2}}}{{16}}\).
Vậy \(DF = \frac{{a\sqrt {13} }}{4}\).
Do đó ta chọn phương án A.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận