Cho a, b, c đôi một khác nhau thỏa mãn (a + b + c)2 = a2 + b2 + c2.
Tính \(P = \frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ac}} + \frac{{{c^2}}}{{{c^2} + 2ab}}\).
Cho a, b, c đôi một khác nhau thỏa mãn (a + b + c)2 = a2 + b2 + c2.
Tính \(P = \frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ac}} + \frac{{{c^2}}}{{{c^2} + 2ab}}\).
Quảng cáo
Trả lời:
Lời giải
Ta có (a + b + c)2 = a2 + b2 + c2
⇔ a2 + b2 + c2 + 2ab + 2bc + 2ac = a2 + b2 + c2
⇔ 2ab + 2bc + 2ac = 0
⇔ ab + bc + ac = 0
⇔ \(\left\{ \begin{array}{l}{\rm{ab = - bc - ac}}\\{\rm{bc = - ab - ac}}\\{\rm{ac = - ab - bc}}\end{array} \right.\)
Thay \(\left\{ \begin{array}{l}{\rm{ab = - bc - ac}}\\{\rm{bc = - ab - ac}}\\{\rm{ac = - ab - bc}}\end{array} \right.\) vào biểu thức P ta có
P = \(\frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ac}} + \frac{{{c^2}}}{{{c^2} + 2ab}}\)
P = \(\frac{{{a^2}}}{{{a^2} + bc + bc}} + \frac{{{b^2}}}{{{b^2} + ac + ac}} + \frac{{{c^2}}}{{{c^2} + ab + ab}}\)
P = \(\frac{{{a^2}}}{{{a^2} + bc - ab - ac}} + \frac{{{b^2}}}{{{b^2} + ac - ab - bc}} + \frac{{{c^2}}}{{{c^2} + ab - bc - ac}}\)
P = \(\frac{{{a^2}}}{{a(a - b) - c(a - b)}} + \frac{{{b^2}}}{{ - b(a - b) + c(a - b)}} + \frac{{{c^2}}}{{ - c(b - c) + a(b - c)}}\)
P = \(\frac{{{a^2}}}{{(a - b)(a - c)}} + \frac{{{b^2}}}{{(a - b)(c - b)}} + \frac{{{c^2}}}{{(b - c)(a - c)}}\)
P = \(\frac{{{a^2}(c - b) + {b^2}(a - c) + {c^2}(b - a)}}{{(a - b)(b - c)(c - a)}}\)
P = \(\frac{{{a^2}c - {a^2}b + {b^2}a - {b^2}c + {c^2}b - {c^2}a}}{{(a - b)(b - c)(c - a)}}\)
P = \(\frac{{{a^2}c - {a^2}b + {b^2}a - {b^2}c + {c^2}b - {c^2}a}}{{(a - b)(b - c)(c - a)}}\)
P = \(\frac{{(abc - {b^2}c - a{c^2} + b{c^2}) + ({a^2}c - {a^2}b + a{b^2} - abc)}}{{(a - b)(b - c)(c - a)}}\)
P = \(\frac{{c(ab - {b^2} - ac + bc) + a(ac - ab + {b^2} - bc)}}{{(a - b)(b - c)(c - a)}}\)
P = \(\frac{{(ab - {b^2} - ac + bc)(c - a)}}{{(a - b)(b - c)(c - a)}}\)
P = \(\frac{{(a - b)(b - c)(c - a)}}{{(a - b)(b - c)(c - a)}} = 1\)
Vậy P = 1.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Xét ∆ABH và ∆CBA có:
\(\widehat {BHA} = \widehat {BAC} = 90^\circ \)
\(\widehat {ABC}\) chung.
Do đó (g.g)
Suy ra \(\frac{{AB}}{{CB}} = \frac{{BH}}{{BA}}\) (tỉ số đồng dạng)
Do đó AB2 = BH . BC.
b) Vì tam giác AHC vuông tại H nên \(\widehat {HCA} + \widehat {HAC} = 90^\circ \)(trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Mà \(\widehat {BAH} + \widehat {HAC} = \widehat {BAC} = 90^\circ \)
Suy ra \(\widehat {BAH} = \widehat {HCA}\)
Xét ∆AHB và ∆CHA có:
\(\widehat {BHA} = \widehat {AHC} = 90^\circ \)
\(\widehat {BAH} = \widehat {HCA}\)(chứng minh trên)
Do đó (g.g)
Suy ra \(\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\) (tỉ số đồng dạng)
Do đó AH2 = BH . CH.
c) Ta có \[{S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\]
Suy ra AB . AC = AH . BC.
d) Xét ∆CAH và ∆CBA có:
\(\widehat {CHA} = \widehat {BAC} = 90^\circ \).
\(\widehat {ACB}\) chung.
Do đó (g.g)
Suy ra \(\frac{{AC}}{{BC}} = \frac{{HC}}{{AC}}\) (tỉ số đồng dạng)
Do đó AC2 = CH . BC.
Lời giải
Lời giải
a) Ta có:
\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \)
= \(\overrightarrow {EA} + \overrightarrow {AB} + \overrightarrow {CD} \)
= \(\overrightarrow {EB} + \overrightarrow {CD} \)
= \(\overrightarrow {ED} + \overrightarrow {DB} + \overrightarrow {CB} + \overrightarrow {BD} \)
= \(\overrightarrow {ED} + \overrightarrow {CB} + (\overrightarrow {BD} + \overrightarrow {DB} )\)
= \(\overrightarrow {CB} + \overrightarrow {ED} \)
Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \)
b) Ta có:
\(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \)
= \(\overrightarrow {AC} + \overrightarrow {CD} + \overrightarrow {CE} \)
= \(\overrightarrow {AC} + \overrightarrow {CE} + \overrightarrow {CD} \)
= \(\overrightarrow {AE} + \overrightarrow {CD} \)
= \(\overrightarrow {AE} + \overrightarrow {CB} + \overrightarrow {BD} \)
= \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \)
Vậy \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.