Câu hỏi:

13/07/2024 16,803

Cho đường tròn (O; R), đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’) với đường tròn (O). Một đường thẳng qua O cắt đường thẳng d ở M và cắt đường thẳng (d’) ở P. Từ O vẽ một tia vuông góc với MP cắt đường thẳng (d’) ở N.

a) Chứng minh OM = OP và tam giác NMP cân

b) Kẻ OI vuông góc MN. Chứng minh MN là tiếp tuyến của đường tròn (O) tại I

c) Chứng minh AM . BN = R2

d) Tìm vị trí của M để diện tích tứ giác AMNB nhỏ nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì (d) và (d’) là tiếp tuyến của (O) tại A, B

Nên OA d, OB d’

Suy ra \(\widehat {OAM} = 90^\circ \), \(\widehat {OBP} = 90^\circ \)

Ta có đường tròn (O; R), đường kính AB

Nên OA = OB = R

Xét tam giác OAM và tam giác OBP có

\(\widehat {OAM} = \widehat {OBP}\left( { = 90^\circ } \right)\)

OA = OB

\(\widehat {MOA} = \widehat {POB}\) (hai góc đối đỉnh)

Do đó OAM = OBP (g.c.g)

Suy ra OM = OP (hai cạnh tương ứng)

Xét tam giác MNP có NO vừa là đường cao vừa là đường trung tuyến

Suy ra tam giác MNP cân tại N

b) Xét tam giác MNP cân tại N có NO là đường cao

Suy ra NO là tia phân giác của góc MNP

Suy ra \(\widehat {ONI} = \widehat {ONB}\)

Xét tam giác ONI và tam giác ONB có

\(\widehat {OIN} = \widehat {OBN}\left( { = 90^\circ } \right)\)

ON là cạnh chung

\(\widehat {ONI} = \widehat {ONB}\)(chứng minh trên)

Do đó ONI = ONB (cạnh huyền – góc nhọn)

Suy ra OI = OB (hai cạnh tương ứng)

Mà OB = R nên OI = R

Xét (O; R) có OI = R, OI MN

Suy ra MN là tiếp tuyến của (O) tại I

c) Xét (O) có MA , MI là hai tiếp tuyến cắt nhau tại M

Suy ra MA = MI

Xét (O) có NB , NI là hai tiếp tuyến cắt nhau tại N

Suy ra NB = NI

Vì tam giác OMN vuông tại O có OI MN

Nên IM . IN = OI2 = R2

Mà MA = MI, NB = NI (chứng minh trên)

Suy ra AM . BN = R2

d) Tứ giác ABNM có \(\widehat {MAB} = \widehat {ABN} = 90^\circ \)

Nên ABNM là hình thang vuông

Suy ra \({S_{ABNM}} = \frac{{(AM + BN).AB}}{2} = \frac{{\left( {AI + IN} \right).2{\rm{R}}}}{2} = MN.R\)

Kẻ MH vuông góc d’

Ta có tam giác MHN vuông tại H

Suy ra MN ≥ MH

Để diện tích tứ giác ABNM nhỏ nhất

MN nhỏ nhất

Mà MN ≥ MH (chứng minh trên)

Dấu “ = ” xảy ra khi M ≡ H

Vậy điểm M nằm trên đường thẳng song song AB cách AB một khoảng bằng R thì diện tích tứ giác ABNM nhỏ nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Xét ∆ABH và ∆CBA có:

\(\widehat {BHA} = \widehat {BAC} = 90^\circ \)

\(\widehat {ABC}\) chung.

Do đó  (g.g)

Suy ra \(\frac{{AB}}{{CB}} = \frac{{BH}}{{BA}}\) (tỉ số đồng dạng)

Do đó AB2 = BH . BC.

b) Vì tam giác AHC vuông tại H nên  \(\widehat {HCA} + \widehat {HAC} = 90^\circ \)(trong tam giác vuông, tổng hai góc nhọn bằng 90°)

\(\widehat {BAH} + \widehat {HAC} = \widehat {BAC} = 90^\circ \)

Suy ra \(\widehat {BAH} = \widehat {HCA}\)

Xét ∆AHB và ∆CHA có:

\(\widehat {BHA} = \widehat {AHC} = 90^\circ \)

\(\widehat {BAH} = \widehat {HCA}\)(chứng minh trên)

Do đó  (g.g)

Suy ra \(\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\) (tỉ số đồng dạng)

Do đó AH2 = BH . CH.

c) Ta có \[{S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\]

Suy ra AB . AC = AH . BC.

d) Xét ∆CAH và ∆CBA có:

\(\widehat {CHA} = \widehat {BAC} = 90^\circ \).

\(\widehat {ACB}\) chung.

Do đó  (g.g)

Suy ra \(\frac{{AC}}{{BC}} = \frac{{HC}}{{AC}}\) (tỉ số đồng dạng)

Do đó AC2 = CH . BC.

Lời giải

Lời giải

Ta có n(Ω) = \({\rm{C}}_{12}^3\) = 220

a) Gọi biến cố A: “ trong 3 bóng lấy ra có ít nhất 2 bóng tốt ”

+) Trong 3 bóng có 2 bóng tốt, 1 bóng không tốt: \({\rm{C}}_5^1.{\rm{C}}_7^2\)

+) Trong 3 bóng có 3 bóng tốt: \({\rm{C}}_7^3\)

Suy ra n(A) = \({\rm{C}}_5^1.{\rm{C}}_7^2\) + \({\rm{C}}_7^3\) = 140

Vậy xác suất để lấy được ít nhất 2 bóng tốt là \(P\left( A \right) = \frac{{140}}{{220}} = \frac{7}{{11}}\).

b) Gọi biến cố B: “ trong 3 bóng lấy ra có ít nhất 1 bóng tốt ”

Gọi \(\overline {\rm{B}} \) là biến có đối của biến cố B: “ trong 3 bóng lấy ra đều là bóng không tốt ”

Nên \({\rm{n}}\left( {\overline B } \right){\rm{ = }}\,{\rm{C}}_5^3 = 10\)

Suy ra \(P\left( {\overline B } \right) = \frac{{10}}{{220}} = \frac{1}{{22}}\).

Vậy xác suất để lấy được ít nhất 1 bóng tốt là: \(P\left( B \right) = 1 - P\left( {\overline B } \right) = 1 - \frac{1}{{22}} = \frac{{21}}{{22}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP