Câu hỏi:

13/07/2024 17,029

Hai lớp 9A và 9B cùng tham gia lao động vệ sinh sân trường thì công việc được hoàn thành sau 1 giờ 20 phút. Nếu mỗi lớp chia nhau làm nửa công việc thì thời gian hoàn tất là 3 giờ. Hỏi nếu mỗi lớp làm một mình thì phải mất bao nhiêu thời gian?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Gọi thời gian làm một mình xong công việc của lớp 9A là x (giờ)

Thời gian làm một mình xong công việc của lớp 9B là y (giờ)

Đổi 1 giờ 20 phút = \(\frac{4}{3}\) giờ

Trong \(\frac{4}{3}\) giờ lớp 9A làm được \(\frac{4}{{3x}}\) công việc

Trong \(\frac{4}{3}\) giờ lớp 9B làm được \(\frac{4}{{3y}}\) công việc

Suy ra \(\frac{4}{{3x}} + \frac{4}{{3y}} = 1\)                          (1)

Thời gian lớp 9A làm nửa công việc là \(\frac{1}{2}x\)

Thời gian lớp 9B làm nửa công việc là \(\frac{1}{2}y\)

Suy ra \(\frac{1}{2}x + \frac{1}{2}y = 3\)              (2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{ \begin{array}{l}\frac{4}{{3{\rm{x}}}} + \frac{4}{{3y}} = 1\\\frac{1}{2}x + \frac{1}{2}y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{{\rm{x}}} + \frac{1}{y} = \frac{3}{4}\\x + y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{{6 - y}} + \frac{1}{y} = \frac{3}{4}\\x = 6 - y\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{{6 - y}} + \frac{1}{y} = \frac{3}{4}\\x = 6 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{{y + 6 - y}}{{(6 - y)y}} = \frac{3}{4}\\x = 6 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3y(6 - y) = 24\\x = 6 - y\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}3y(6 - y) = 24\\x = 6 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 3{y^2} + 18y - 24 = 0\\x = 6 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}(y - 2)(y - 4) = 0\\x = 6 - y\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}(y - 2)(y - 4) = 0\\x = 6 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}y = 2\\y = 4\end{array} \right.\\x = 6 - y\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}y = 2\\x = 4\end{array} \right.\\\left\{ \begin{array}{l}y = 4\\x = 2\end{array} \right.\end{array} \right.\) (thỏa mãn)

Vậy nếu làm một mình lớp 9A sau 4 giờ hoàn thành công việc, lớp 9B sau 2 giờ hoàn thành công việc hoặc lớp 9A sau 2 giờ hoàn thành công việc, lớp 9B sau 4 giờ hoàn thành công việc.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Xét ∆ABH và ∆CBA có:

\(\widehat {BHA} = \widehat {BAC} = 90^\circ \)

\(\widehat {ABC}\) chung.

Do đó  (g.g)

Suy ra \(\frac{{AB}}{{CB}} = \frac{{BH}}{{BA}}\) (tỉ số đồng dạng)

Do đó AB2 = BH . BC.

b) Vì tam giác AHC vuông tại H nên  \(\widehat {HCA} + \widehat {HAC} = 90^\circ \)(trong tam giác vuông, tổng hai góc nhọn bằng 90°)

\(\widehat {BAH} + \widehat {HAC} = \widehat {BAC} = 90^\circ \)

Suy ra \(\widehat {BAH} = \widehat {HCA}\)

Xét ∆AHB và ∆CHA có:

\(\widehat {BHA} = \widehat {AHC} = 90^\circ \)

\(\widehat {BAH} = \widehat {HCA}\)(chứng minh trên)

Do đó  (g.g)

Suy ra \(\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\) (tỉ số đồng dạng)

Do đó AH2 = BH . CH.

c) Ta có \[{S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\]

Suy ra AB . AC = AH . BC.

d) Xét ∆CAH và ∆CBA có:

\(\widehat {CHA} = \widehat {BAC} = 90^\circ \).

\(\widehat {ACB}\) chung.

Do đó  (g.g)

Suy ra \(\frac{{AC}}{{BC}} = \frac{{HC}}{{AC}}\) (tỉ số đồng dạng)

Do đó AC2 = CH . BC.

Lời giải

Lời giải

Ta có n(Ω) = \({\rm{C}}_{12}^3\) = 220

a) Gọi biến cố A: “ trong 3 bóng lấy ra có ít nhất 2 bóng tốt ”

+) Trong 3 bóng có 2 bóng tốt, 1 bóng không tốt: \({\rm{C}}_5^1.{\rm{C}}_7^2\)

+) Trong 3 bóng có 3 bóng tốt: \({\rm{C}}_7^3\)

Suy ra n(A) = \({\rm{C}}_5^1.{\rm{C}}_7^2\) + \({\rm{C}}_7^3\) = 140

Vậy xác suất để lấy được ít nhất 2 bóng tốt là \(P\left( A \right) = \frac{{140}}{{220}} = \frac{7}{{11}}\).

b) Gọi biến cố B: “ trong 3 bóng lấy ra có ít nhất 1 bóng tốt ”

Gọi \(\overline {\rm{B}} \) là biến có đối của biến cố B: “ trong 3 bóng lấy ra đều là bóng không tốt ”

Nên \({\rm{n}}\left( {\overline B } \right){\rm{ = }}\,{\rm{C}}_5^3 = 10\)

Suy ra \(P\left( {\overline B } \right) = \frac{{10}}{{220}} = \frac{1}{{22}}\).

Vậy xác suất để lấy được ít nhất 1 bóng tốt là: \(P\left( B \right) = 1 - P\left( {\overline B } \right) = 1 - \frac{1}{{22}} = \frac{{21}}{{22}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP