Câu hỏi:

13/07/2024 12,328

Hai lớp 9A và 9B cùng tham gia lao động vệ sinh sân trường thì công việc được hoàn thành sau 1 giờ 20 phút. Nếu mỗi lớp chia nhau làm nửa công việc thì thời gian hoàn tất là 3 giờ. Hỏi nếu mỗi lớp làm một mình thì phải mất bao nhiêu thời gian?

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Gọi thời gian làm một mình xong công việc của lớp 9A là x (giờ)

Thời gian làm một mình xong công việc của lớp 9B là y (giờ)

Đổi 1 giờ 20 phút = \(\frac{4}{3}\) giờ

Trong \(\frac{4}{3}\) giờ lớp 9A làm được \(\frac{4}{{3x}}\) công việc

Trong \(\frac{4}{3}\) giờ lớp 9B làm được \(\frac{4}{{3y}}\) công việc

Suy ra \(\frac{4}{{3x}} + \frac{4}{{3y}} = 1\)                          (1)

Thời gian lớp 9A làm nửa công việc là \(\frac{1}{2}x\)

Thời gian lớp 9B làm nửa công việc là \(\frac{1}{2}y\)

Suy ra \(\frac{1}{2}x + \frac{1}{2}y = 3\)              (2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{ \begin{array}{l}\frac{4}{{3{\rm{x}}}} + \frac{4}{{3y}} = 1\\\frac{1}{2}x + \frac{1}{2}y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{{\rm{x}}} + \frac{1}{y} = \frac{3}{4}\\x + y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{{6 - y}} + \frac{1}{y} = \frac{3}{4}\\x = 6 - y\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{{6 - y}} + \frac{1}{y} = \frac{3}{4}\\x = 6 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{{y + 6 - y}}{{(6 - y)y}} = \frac{3}{4}\\x = 6 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3y(6 - y) = 24\\x = 6 - y\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}3y(6 - y) = 24\\x = 6 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 3{y^2} + 18y - 24 = 0\\x = 6 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}(y - 2)(y - 4) = 0\\x = 6 - y\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}(y - 2)(y - 4) = 0\\x = 6 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}y = 2\\y = 4\end{array} \right.\\x = 6 - y\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}y = 2\\x = 4\end{array} \right.\\\left\{ \begin{array}{l}y = 4\\x = 2\end{array} \right.\end{array} \right.\) (thỏa mãn)

Vậy nếu làm một mình lớp 9A sau 4 giờ hoàn thành công việc, lớp 9B sau 2 giờ hoàn thành công việc hoặc lớp 9A sau 2 giờ hoàn thành công việc, lớp 9B sau 4 giờ hoàn thành công việc.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh:

a) AB2 = BH . BC;

b) AH2 = BH . HC;

c) AB . AC = AH . BC;

d) AC2 = CH . BC.

Xem đáp án » 13/07/2024 24,009

Câu 2:

Cho 5 điểm A, B, C, D, E. Chứng minh rằng:

a) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \).

b) \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).

Xem đáp án » 13/07/2024 21,937

Câu 3:

Cho (O; R), lấy điểm A cách O một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.

a) Chứng minh: Tam giác OBA vuông tại B và Tam giác OAK cân tại K.

b) Đường thẳng KI cắt AB tại M. Chứng minh rằng KM là tiếp tuyến của đường tròn (O).
c) Tính chu vi tam giác AMK theo R.

Xem đáp án » 13/07/2024 16,777

Câu 4:

Cho đường tròn (O; R), đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’) với đường tròn (O). Một đường thẳng qua O cắt đường thẳng d ở M và cắt đường thẳng (d’) ở P. Từ O vẽ một tia vuông góc với MP cắt đường thẳng (d’) ở N.

a) Chứng minh OM = OP và tam giác NMP cân

b) Kẻ OI vuông góc MN. Chứng minh MN là tiếp tuyến của đường tròn (O) tại I

c) Chứng minh AM . BN = R2

d) Tìm vị trí của M để diện tích tứ giác AMNB nhỏ nhất.

Xem đáp án » 13/07/2024 13,427

Câu 5:

Cho a, b, c đôi một khác nhau thỏa mãn (a + b + c)2 = a2 + b2 + c2.

Tính \(P = \frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ac}} + \frac{{{c^2}}}{{{c^2} + 2ab}}\).

Xem đáp án » 13/07/2024 12,698

Câu 6:

Một hộp bóng đèn có 12 bóng, trong đó có 7 bóng tốt. Lấy ngẫu nhiên 3 bóng. Tính xác suất để lấy được:

a) Ít nhất 2 bóng tốt.  

b) Ít nhất 1 bóng tốt.

Xem đáp án » 13/07/2024 12,040

Bình luận


Bình luận