Câu hỏi:

19/08/2025 194,148 Lưu

Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D.

a) Chứng minh tứ giác MAOB nội tiếp.

b) Gọi H là giao điểm của MO và AB. Chứng minh MC . MD = MA2. Từ đó suy ra MC . MD = MH . MO.

c) Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì MA, MB là tiếp tuyến của (O)  cắt nhau tại M

Nên MA OA, MB OB, MA = MB

Suy ra \(\widehat {OAM} = \widehat {OBM} = 90^\circ \)

Xét tứ giác AMBO có \(\widehat {OAM} + \widehat {OBM} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra tứ giác AMBO nội tiếp

Vậy tứ giác AMBO nội tiếp .

b) Xét (O) có \(\widehat {CBM}\) là góc tạo bởi tiếp tuyến và dây cung BC

\(\widehat {B{\rm{D}}M}\) là góc nội tiếp chắn cung BC

Suy ra \(\widehat {CBM} = \widehat {MDB}\)

Xét tam giác MBC và tam giác MDB có

\(\widehat {CBM} = \widehat {MDB}\)

\(\widehat {BMD}\) là góc chung

Suy ra (g.g)

Do đó \(\frac{{{\rm{MB}}}}{{{\rm{MD}}}} = \frac{{{\rm{MC}}}}{{{\rm{MB}}}}\)

Suy ra MC . MD = MB2

Mà MA = MB (chứng minh câu a)

Suy ra MC . MD = MA2                       (1)

Vì MA = MB nên M thuộc trung trực của AB

Vì OA = OB nên O thuộc trung trực của AB

Suy ra MO là trung trực của AB

Do đó MO AB

Xét tam giác MAO vuông tại A có MO AH

Suy ra MH . MO = MA2 (hệ thức lượng trong tam giác vuông)                    (2)

Từ (1) và (2) suy ra MC . MD = MH . MO

c) Vì MC . MD = MH . MO nên \(\frac{{MC}}{{MO}} = \frac{{MH}}{{M{\rm{D}}}}\)

Xét tam giác MCH và tam giác MOD có

\(\widehat {OMD}\) là góc chung

\(\frac{{MC}}{{MO}} = \frac{{MH}}{{M{\rm{D}}}}\) (chứng minh trên)

Suy ra (c.g.c)

Do đó \(\widehat {MHC} = \widehat {MDO}\) (hai góc tương ứng)

\(\widehat {MHC} + \widehat {OHC} = 180^\circ \)

Suy ra \(\widehat {MDO} + \widehat {OHC} = 180^\circ \)

Do đó tứ giác CHOD nội tiếp

Suy ra \(\widehat {OH{\rm{D}}} = \widehat {OC{\rm{D}}}\)

Vì OC = OD nên tam giác OCD cân tại O

Suy ra \(\widehat {O{\rm{DC}}} = \widehat {OC{\rm{D}}}\)

\(\widehat {OH{\rm{D}}} = \widehat {OC{\rm{D}}}\) nên \(\widehat {O{\rm{DC}}} = \widehat {OH{\rm{D}}}\)

Lại có \(\widehat {MHC} = \widehat {CDO}\) (chứng minh trên)

Suy ra \(\widehat {MHC} = \widehat {OH{\rm{D}}}\)

Suy ra \(90^\circ - \widehat {MHC} = 90^\circ - \widehat {OH{\rm{D}}}\)

Hay \(\widehat {BHC} = \widehat {BH{\rm{D}}}\)

\(\widehat {BHC} + \widehat {BH{\rm{D}}} = \widehat {CH{\rm{D}}}\)

Suy ra \(\frac{{\widehat {CH{\rm{D}}}}}{2} = \widehat {CHB}\)

Xét tam giác COD cân tại O có OK là trung tuyến

Suy ra OK là phân giác của góc COD

Do đó \(\frac{{\widehat {{\rm{COD}}}}}{2} = \widehat {{\rm{COK}}}\)

Xét (O) có \(\widehat {CH{\rm{D}}},\widehat {{\rm{ COD}}}\)cùng chắn cung CD

Suy ra \(\widehat {CH{\rm{D}}} = \widehat {{\rm{COD}}}\)

Suy ra \(\frac{{\widehat {CH{\rm{D}}}}}{2} = \frac{{\widehat {{\rm{COD}}}}}{2}\)

Do đó \(\widehat {CHB} = \widehat {{\rm{COE}}}\)

Xét tứ giác CHOE có \(\widehat {CHE} = \widehat {{\rm{COE}}}\)

\(\widehat {CHE},\widehat {{\rm{COE}}}\) cùng chắn cung CE

Suy ra tứ giác CHOE nội tiếp

Suy ra \(\widehat {OHE} = \widehat {{\rm{OCE}}}\) (vì cùng chắn cung OE)

\(\widehat {OHE} = {\rm{90}}^\circ \)

Nên \(\widehat {OCE} = {\rm{90}}^\circ \)

Hay OC CE

Xét (O) có OC CE, OC là bán kính

Suy ra EC là tiếp tuyến của (O)

Vậy EC là tiếp tuyến của (O).

B

Bé Na

Ai giúp mình giải bài này với ạ em cảm ơn 😷

Ảnh đính kèm

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Vì ABCD là hình bình hành

Nên AB // CD, AB = CD

Mà AB = 2AM, CD = 2CN

Suy ra AM = CN                                        

Xét tứ giác AMCN có

AM / /CN (chứng minh trên)

AM = CN (chứng minh trên)

Do đó: AMCN là hình bình hành

Suy ra AN // CM

Xét ΔDFC có

N là trung điểm của DC

NE // FC

Do đó: E là trung điểm của DF

Suy ra DE = EF                (1)

Xét ΔABE có

M là trung điểm của BA

MF // AE

Do đó: F là trung điểm của BE

Suy ra BF = FE                (2)

Từ (1) và (2) suy ra DE = EF = FB

Suy ra \(\overrightarrow {DE} = \overrightarrow {{\rm{EF}}} = \overrightarrow {FB} \)

Vậy \(\overrightarrow {DE} = \overrightarrow {{\rm{EF}}} = \overrightarrow {FB} \).

Lời giải

Lời giải

Media VietJack

Gắn hệ trục tọa độ Oxy như hình vẽ, chiếc cổng là một phần của Parabol (P): y = ax2 + bx + c với a < 0

Do parabol (P) đối xứng ua trục tung nên có trục đối xứng x = 0

Suy ra \( - \frac{b}{{2{\rm{a}}}} = 0 \Leftrightarrow b = 0\)

Chiều cao của cổng parabol là 4 nên G(0; 4)

Suy ra c = 4

Do đó (P): y = ax2 + 4

Vì kích thước cửa ở giữa là 3 x 4 nên E(2; 3), F(– 2; 3)

Suy ra 3 = 4a + 4

Suy ra a = \( - \frac{1}{4}\)

Do đó (P): y = \( - \frac{1}{4}\)x2 + 4

Ta có \( - \frac{1}{4}\)x2 + 4 = 0

\( \Leftrightarrow {x^2} = 16 \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = - 4\end{array} \right.\)

Suy ra A(– 4; 0) và B(4; 0)

Do đó AB = 8 (m)

Vậy AB = 8 m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP