Câu hỏi:

13/07/2024 88,956

Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D.

a) Chứng minh tứ giác MAOB nội tiếp.

b) Gọi H là giao điểm của MO và AB. Chứng minh MC . MD = MA2. Từ đó suy ra MC . MD = MH . MO.

c) Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì MA, MB là tiếp tuyến của (O)  cắt nhau tại M

Nên MA OA, MB OB, MA = MB

Suy ra \(\widehat {OAM} = \widehat {OBM} = 90^\circ \)

Xét tứ giác AMBO có \(\widehat {OAM} + \widehat {OBM} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra tứ giác AMBO nội tiếp

Vậy tứ giác AMBO nội tiếp .

b) Xét (O) có \(\widehat {CBM}\) là góc tạo bởi tiếp tuyến và dây cung BC

\(\widehat {B{\rm{D}}M}\) là góc nội tiếp chắn cung BC

Suy ra \(\widehat {CBM} = \widehat {MDB}\)

Xét tam giác MBC và tam giác MDB có

\(\widehat {CBM} = \widehat {MDB}\)

\(\widehat {BMD}\) là góc chung

Suy ra (g.g)

Do đó \(\frac{{{\rm{MB}}}}{{{\rm{MD}}}} = \frac{{{\rm{MC}}}}{{{\rm{MB}}}}\)

Suy ra MC . MD = MB2

Mà MA = MB (chứng minh câu a)

Suy ra MC . MD = MA2                       (1)

Vì MA = MB nên M thuộc trung trực của AB

Vì OA = OB nên O thuộc trung trực của AB

Suy ra MO là trung trực của AB

Do đó MO AB

Xét tam giác MAO vuông tại A có MO AH

Suy ra MH . MO = MA2 (hệ thức lượng trong tam giác vuông)                    (2)

Từ (1) và (2) suy ra MC . MD = MH . MO

c) Vì MC . MD = MH . MO nên \(\frac{{MC}}{{MO}} = \frac{{MH}}{{M{\rm{D}}}}\)

Xét tam giác MCH và tam giác MOD có

\(\widehat {OMD}\) là góc chung

\(\frac{{MC}}{{MO}} = \frac{{MH}}{{M{\rm{D}}}}\) (chứng minh trên)

Suy ra (c.g.c)

Do đó \(\widehat {MHC} = \widehat {MDO}\) (hai góc tương ứng)

\(\widehat {MHC} + \widehat {OHC} = 180^\circ \)

Suy ra \(\widehat {MDO} + \widehat {OHC} = 180^\circ \)

Do đó tứ giác CHOD nội tiếp

Suy ra \(\widehat {OH{\rm{D}}} = \widehat {OC{\rm{D}}}\)

Vì OC = OD nên tam giác OCD cân tại O

Suy ra \(\widehat {O{\rm{DC}}} = \widehat {OC{\rm{D}}}\)

\(\widehat {OH{\rm{D}}} = \widehat {OC{\rm{D}}}\) nên \(\widehat {O{\rm{DC}}} = \widehat {OH{\rm{D}}}\)

Lại có \(\widehat {MHC} = \widehat {CDO}\) (chứng minh trên)

Suy ra \(\widehat {MHC} = \widehat {OH{\rm{D}}}\)

Suy ra \(90^\circ - \widehat {MHC} = 90^\circ - \widehat {OH{\rm{D}}}\)

Hay \(\widehat {BHC} = \widehat {BH{\rm{D}}}\)

\(\widehat {BHC} + \widehat {BH{\rm{D}}} = \widehat {CH{\rm{D}}}\)

Suy ra \(\frac{{\widehat {CH{\rm{D}}}}}{2} = \widehat {CHB}\)

Xét tam giác COD cân tại O có OK là trung tuyến

Suy ra OK là phân giác của góc COD

Do đó \(\frac{{\widehat {{\rm{COD}}}}}{2} = \widehat {{\rm{COK}}}\)

Xét (O) có \(\widehat {CH{\rm{D}}},\widehat {{\rm{ COD}}}\)cùng chắn cung CD

Suy ra \(\widehat {CH{\rm{D}}} = \widehat {{\rm{COD}}}\)

Suy ra \(\frac{{\widehat {CH{\rm{D}}}}}{2} = \frac{{\widehat {{\rm{COD}}}}}{2}\)

Do đó \(\widehat {CHB} = \widehat {{\rm{COE}}}\)

Xét tứ giác CHOE có \(\widehat {CHE} = \widehat {{\rm{COE}}}\)

\(\widehat {CHE},\widehat {{\rm{COE}}}\) cùng chắn cung CE

Suy ra tứ giác CHOE nội tiếp

Suy ra \(\widehat {OHE} = \widehat {{\rm{OCE}}}\) (vì cùng chắn cung OE)

\(\widehat {OHE} = {\rm{90}}^\circ \)

Nên \(\widehat {OCE} = {\rm{90}}^\circ \)

Hay OC CE

Xét (O) có OC CE, OC là bán kính

Suy ra EC là tiếp tuyến của (O)

Vậy EC là tiếp tuyến của (O).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD. Gọi M và N lần lượt là trung điểm của AB và DC. AN và CM lần lượt cắt BD tại E và F. Chứng minh \(\overrightarrow {DE} = \overrightarrow {{\rm{EF}}} = \overrightarrow {FB} \)

Xem đáp án » 13/07/2024 25,382

Câu 2:

Một chiếc cổng hình Parabol bao gồm một cửa chính hình chữ nhật ở giữa và hai cánh cửa phụ ở hai bên như hình vẽ. Biết chiều cao cổng Parabol là 4 m  còn kích thước cửa ở giữa là 3 m × 4 m . Hãy tính khoảng cách giữa 2 điểm A và B.
Media VietJack

Xem đáp án » 13/07/2024 18,916

Câu 3:

Chứng minh đẳng thức

a) cos4 x – sin4 x = cos2x.

b) cos4 x + sin4 x = \(\frac{3}{4} + \frac{1}{4}\)cos 4x.

c) \(\frac{{1 - c{\rm{os2x}}}}{{{\mathop{\rm s}\nolimits} {\rm{inx}}}}\)= tanx.

Xem đáp án » 13/07/2024 17,497

Câu 4:

Cho hình bình hành ABCD (AB > AD). Qua A kẻ đường thẳng vuông góc với BD tại E, cắt CD tại I. Qua C kẻ đường thẳng vuông góc với AB tại F, cắt AB tại K.
a) Tứ giác AKCI là hình gì? Vì sao?

b) Chứng minh AF // CE

c) Chứng minh rằng ba đường thẳng AC, EF và KI đồng quy tại một điểm.

Xem đáp án » 13/07/2024 14,525

Câu 5:

Vẽ đồ thị các hàm số sau:

a) y = 2x2 + 4x – 1;

b) y = – x2 + 2x + 3;

c) y = – 3x2 + 6x;

d) y = 2x2 – 5.

Xem đáp án » 13/07/2024 11,498

Câu 6:

Cho tam giác ABC cân ở A và H là trung điểm BC.Gọi I là hình chiếu vuông góc của H lên AC và O là trung điểm của HI. Chứng minh

a) \(\widehat {AHO} = \widehat {BCI}\)

b) AH . IC = HI . HC = HO . BC

c) Tam giác AHO đồng dạng tam giác BCI

d) AO vuông góc BI.

Xem đáp án » 13/07/2024 8,769

Bình luận


Bình luận

Bé Na
01:34 - 09/05/2024

Ai giúp mình giải bài này với ạ em cảm ơn 😷

Ảnh đính kèm
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store