Câu hỏi:
13/07/2024 21,461Cho tam giác ABC cân ở A và H là trung điểm BC.Gọi I là hình chiếu vuông góc của H lên AC và O là trung điểm của HI. Chứng minh
a) \(\widehat {AHO} = \widehat {BCI}\)
b) AH . IC = HI . HC = HO . BC
c) Tam giác AHO đồng dạng tam giác BCI
d) AO vuông góc BI.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Vì tam giác ABC cân tại A nên AB = AC
Vì H là trung điểm của BC nên HA = HC
Xét tam giác AHB và tam giác AHC có
AH là cạnh chung
AB = AC (chứng minh trên)
HA = HC (chứng minh trên)
Do đó ΔAHB = ΔAHC (c.c.c)
Suy ra \(\widehat {AHB} = \widehat {AHC}\) (hai góc tương ứng)
Mà \(\widehat {AHB} + \widehat {AHC} = 180^\circ \)
Suy ra \(\widehat {AHB} = \widehat {AHC} = 90^\circ \)
Hay AH ⊥ BC
Vì tam giác HIC vuông tại I nên \(\widehat {IHC} + \widehat {ICH} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Mà \(\widehat {AHO} + \widehat {IHC} = \widehat {AHC} = 90^\circ \)
Suy ra \(\widehat {AHO} = \widehat {BCI}\)
Vậy \(\widehat {AHO} = \widehat {BCI}\).
b) Xét ΔAHI và ΔHCI có:
\(\widehat {AHI} = \widehat {HCI}\) (chứng minh câu a)
\(\widehat {AIH} = \widehat {CIH}\left( { = 90^\circ } \right)\)
Do đó (g.g)
Suy ra AH . IC = HI . HC
Mà HI = 2. HO; HC = \(\frac{{{\rm{BC}}}}{2}\)
Suy ra HI . HC = 2 . HO . \(\frac{{{\rm{BC}}}}{2}\) = HO . BC
Vậy AH . IC = HI . HC = HO . BC
c) Vì AH . IC = HO . BC nên \(\frac{{AH}}{{HO}} = \frac{{BC}}{{IC}}\)
Xét ΔAHO và ΔBCI có:
\(\frac{{AH}}{{HO}} = \frac{{BC}}{{IC}}\) (chứng minh trên)
\(\widehat {AHO} = \widehat {BCI}\) (chứng minh câu a)
Suy ra (c.g.c)
d) Vì nên \(\widehat {HAO} = \widehat {CBI}\)
Gọi giao điểm của AO và BI là D
Xét tam giác ABD có \(\widehat {AB{\rm{D}}} + \widehat {A{\rm{D}}B} + \widehat {DAB} = 180^\circ \) (tổng ba góc trong một tam giác)
Hay \(\widehat {AB{\rm{D}}} + \widehat {DAH} + \widehat {BAH} + \widehat {A{\rm{D}}B} = 180^\circ \)
Mà \(\widehat {HAD} = \widehat {CBI}\)
Suy ra \(\widehat {AB{\rm{D}}} + \widehat {CBI} + \widehat {BAH} + \widehat {A{\rm{D}}B} = 180^\circ \)
Nên \(\widehat {ABH} + \widehat {BAH} + \widehat {A{\rm{D}}B} = 180^\circ \)
Lại có \(\widehat {ABH} + \widehat {BAH} = 90^\circ \) (vì tam giác AHB vuông tại H)
Suy ra \(\widehat {A{\rm{D}}B} = 90^\circ \)
Nên AO ⊥ BI
Vậy AO ⊥ BI.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 1,5k
Đã bán 986
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D.
a) Chứng minh tứ giác MAOB nội tiếp.
b) Gọi H là giao điểm của MO và AB. Chứng minh MC . MD = MA2. Từ đó suy ra MC . MD = MH . MO.
c) Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O).
Câu 2:
Câu 3:
Câu 4:
Chứng minh đẳng thức
a) cos4 x – sin4 x = cos2x.
b) cos4 x + sin4 x = \(\frac{3}{4} + \frac{1}{4}\)cos 4x.
c) \(\frac{{1 - c{\rm{os2x}}}}{{{\mathop{\rm s}\nolimits} {\rm{inx}}}}\)= tanx.
Câu 5:
Cho hình bình hành ABCD (AB > AD). Qua A kẻ đường thẳng vuông góc với BD tại E, cắt CD tại I. Qua C kẻ đường thẳng vuông góc với AB tại F, cắt AB tại K.
a) Tứ giác AKCI là hình gì? Vì sao?
b) Chứng minh AF // CE
c) Chứng minh rằng ba đường thẳng AC, EF và KI đồng quy tại một điểm.
Câu 6:
Vẽ đồ thị các hàm số sau:
a) y = 2x2 + 4x – 1;
b) y = – x2 + 2x + 3;
c) y = – 3x2 + 6x;
d) y = 2x2 – 5.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận