Câu hỏi:
13/07/2024 33,927
Một chiếc cổng hình Parabol bao gồm một cửa chính hình chữ nhật ở giữa và hai cánh cửa phụ ở hai bên như hình vẽ. Biết chiều cao cổng Parabol là 4 m còn kích thước cửa ở giữa là 3 m × 4 m . Hãy tính khoảng cách giữa 2 điểm A và B.

Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Gắn hệ trục tọa độ Oxy như hình vẽ, chiếc cổng là một phần của Parabol (P): y = ax2 + bx + c với a < 0
Do parabol (P) đối xứng ua trục tung nên có trục đối xứng x = 0
Suy ra \( - \frac{b}{{2{\rm{a}}}} = 0 \Leftrightarrow b = 0\)
Chiều cao của cổng parabol là 4 nên G(0; 4)
Suy ra c = 4
Do đó (P): y = ax2 + 4
Vì kích thước cửa ở giữa là 3 x 4 nên E(2; 3), F(– 2; 3)
Suy ra 3 = 4a + 4
Suy ra a = \( - \frac{1}{4}\)
Do đó (P): y = \( - \frac{1}{4}\)x2 + 4
Ta có \( - \frac{1}{4}\)x2 + 4 = 0
\( \Leftrightarrow {x^2} = 16 \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = - 4\end{array} \right.\)
Suy ra A(– 4; 0) và B(4; 0)
Do đó AB = 8 (m)
Vậy AB = 8 m.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Vì MA, MB là tiếp tuyến của (O) cắt nhau tại M
Nên MA ⊥ OA, MB ⊥ OB, MA = MB
Suy ra \(\widehat {OAM} = \widehat {OBM} = 90^\circ \)
Xét tứ giác AMBO có \(\widehat {OAM} + \widehat {OBM} = 90^\circ + 90^\circ = 180^\circ \)
Suy ra tứ giác AMBO nội tiếp
Vậy tứ giác AMBO nội tiếp .
b) Xét (O) có \(\widehat {CBM}\) là góc tạo bởi tiếp tuyến và dây cung BC
\(\widehat {B{\rm{D}}M}\) là góc nội tiếp chắn cung BC
Suy ra \(\widehat {CBM} = \widehat {MDB}\)
Xét tam giác MBC và tam giác MDB có
\(\widehat {CBM} = \widehat {MDB}\)
\(\widehat {BMD}\) là góc chung
Suy ra (g.g)
Do đó \(\frac{{{\rm{MB}}}}{{{\rm{MD}}}} = \frac{{{\rm{MC}}}}{{{\rm{MB}}}}\)
Suy ra MC . MD = MB2
Mà MA = MB (chứng minh câu a)
Suy ra MC . MD = MA2 (1)
Vì MA = MB nên M thuộc trung trực của AB
Vì OA = OB nên O thuộc trung trực của AB
Suy ra MO là trung trực của AB
Do đó MO ⊥ AB
Xét tam giác MAO vuông tại A có MO ⊥ AH
Suy ra MH . MO = MA2 (hệ thức lượng trong tam giác vuông) (2)
Từ (1) và (2) suy ra MC . MD = MH . MO
c) Vì MC . MD = MH . MO nên \(\frac{{MC}}{{MO}} = \frac{{MH}}{{M{\rm{D}}}}\)
Xét tam giác MCH và tam giác MOD có
\(\widehat {OMD}\) là góc chung
\(\frac{{MC}}{{MO}} = \frac{{MH}}{{M{\rm{D}}}}\) (chứng minh trên)
Suy ra (c.g.c)
Do đó \(\widehat {MHC} = \widehat {MDO}\) (hai góc tương ứng)
Mà \(\widehat {MHC} + \widehat {OHC} = 180^\circ \)
Suy ra \(\widehat {MDO} + \widehat {OHC} = 180^\circ \)
Do đó tứ giác CHOD nội tiếp
Suy ra \(\widehat {OH{\rm{D}}} = \widehat {OC{\rm{D}}}\)
Vì OC = OD nên tam giác OCD cân tại O
Suy ra \(\widehat {O{\rm{DC}}} = \widehat {OC{\rm{D}}}\)
Mà \(\widehat {OH{\rm{D}}} = \widehat {OC{\rm{D}}}\) nên \(\widehat {O{\rm{DC}}} = \widehat {OH{\rm{D}}}\)
Lại có \(\widehat {MHC} = \widehat {CDO}\) (chứng minh trên)
Suy ra \(\widehat {MHC} = \widehat {OH{\rm{D}}}\)
Suy ra \(90^\circ - \widehat {MHC} = 90^\circ - \widehat {OH{\rm{D}}}\)
Hay \(\widehat {BHC} = \widehat {BH{\rm{D}}}\)
Mà \(\widehat {BHC} + \widehat {BH{\rm{D}}} = \widehat {CH{\rm{D}}}\)
Suy ra \(\frac{{\widehat {CH{\rm{D}}}}}{2} = \widehat {CHB}\)
Xét tam giác COD cân tại O có OK là trung tuyến
Suy ra OK là phân giác của góc COD
Do đó \(\frac{{\widehat {{\rm{COD}}}}}{2} = \widehat {{\rm{COK}}}\)
Xét (O) có \(\widehat {CH{\rm{D}}},\widehat {{\rm{ COD}}}\)cùng chắn cung CD
Suy ra \(\widehat {CH{\rm{D}}} = \widehat {{\rm{COD}}}\)
Suy ra \(\frac{{\widehat {CH{\rm{D}}}}}{2} = \frac{{\widehat {{\rm{COD}}}}}{2}\)
Do đó \(\widehat {CHB} = \widehat {{\rm{COE}}}\)
Xét tứ giác CHOE có \(\widehat {CHE} = \widehat {{\rm{COE}}}\)
\(\widehat {CHE},\widehat {{\rm{COE}}}\) cùng chắn cung CE
Suy ra tứ giác CHOE nội tiếp
Suy ra \(\widehat {OHE} = \widehat {{\rm{OCE}}}\) (vì cùng chắn cung OE)
Mà \(\widehat {OHE} = {\rm{90}}^\circ \)
Nên \(\widehat {OCE} = {\rm{90}}^\circ \)
Hay OC ⊥ CE
Xét (O) có OC ⊥ CE, OC là bán kính
Suy ra EC là tiếp tuyến của (O)
Vậy EC là tiếp tuyến của (O).
Lời giải
Lời giải
Vì ABCD là hình bình hành
Nên AB // CD, AB = CD
Mà AB = 2AM, CD = 2CN
Suy ra AM = CN
Xét tứ giác AMCN có
AM / /CN (chứng minh trên)
AM = CN (chứng minh trên)
Do đó: AMCN là hình bình hành
Suy ra AN // CM
Xét ΔDFC có
N là trung điểm của DC
NE // FC
Do đó: E là trung điểm của DF
Suy ra DE = EF (1)
Xét ΔABE có
M là trung điểm của BA
MF // AE
Do đó: F là trung điểm của BE
Suy ra BF = FE (2)
Từ (1) và (2) suy ra DE = EF = FB
Suy ra \(\overrightarrow {DE} = \overrightarrow {{\rm{EF}}} = \overrightarrow {FB} \)
Vậy \(\overrightarrow {DE} = \overrightarrow {{\rm{EF}}} = \overrightarrow {FB} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.