Câu hỏi:

11/07/2024 6,656

Cho hàm số có đồ thị (C) \(y = \frac{{2x + 1}}{{x - 1}}\) và đường thẳng  d: y = x + m. Đường thẳng d cắt đồ thị (C) tại hai điểm A và B. Với C(−2; 5), giá trị của tham số m để tam giác ABC đều là bao nhiêu?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Phương trình hoành độ giao điểm của (C) và đường thẳng d:

\(\frac{{2x + 1}}{{x - 1}} = x + m\;\left( {m \ne 1} \right)\)

\( \Leftrightarrow {x^2} + \left( {m - 3} \right)x - m - 1 = 0\) (1)

Khi đó cắt (C) tại hai điểm phân biệt A và B khi và chi khi phương trình (1) có hai nghiệm phân biệt khác 1 

\(\left\{ \begin{array}{l}{\left( {m - 3} \right)^2} + 4\left( {m + 1} \right) > 0\\{1^2} + \left( {m - 3} \right) - m - 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 2m + 13 > 0\\ - 1 \ne 0\end{array} \right.\) (luôn đúng)

Gọi A(x1; x1 + m); B(x2; x2 + m) trong đó x1; x2 là nghiệm của (1), theo Viet ta có: 

\(\left\{ \begin{array}{l}{x_1} + {x_2} = 3 - m\\{x_1}{x_2} = - m - 1\end{array} \right.\)

Gọi \(I\left( {\frac{{{x_1} + {x_2}}}{2};\;\frac{{{x_1} + {x_2} + 2m}}{2}} \right)\) là trung điểm của AB, suy ra \(I\left( {\frac{{3 - m}}{2};\;\frac{{3 + m}}{2}} \right)\), nên

\(\overrightarrow {IC} = \left( { - 2 - \frac{{3 - m}}{2};\;5 - \frac{{3 + m}}{2}} \right)\)

\( \Rightarrow CI = \frac{1}{2}\sqrt {{{\left( {m - 7} \right)}^2} + {{\left( {7 - m} \right)}^2}} \)

Mặt khác \(\overrightarrow {AB} = \left( {{x_2} - {x_1};\;{x_2} - {x_1}} \right)\)

\( \Rightarrow AB = \sqrt {2{{\left( {{x_2} - {x_1}} \right)}^2}} = \sqrt {2\left( {{m^2} - 2m + 13} \right)} \)

Vậy tam giác ABC đều khi và chỉ khi

\(CI = \frac{{\sqrt 3 }}{2}AB \Leftrightarrow \frac{1}{2}\sqrt {2{{\left( {m - 7} \right)}^2}} = \frac{{\sqrt 3 }}{2}\sqrt {2\left( {{m^2} - 2m + 13} \right)} \)

\( \Leftrightarrow {\left( {m - 7} \right)^2} = 3\left( {{m^2} - 2m + 13} \right)\)

Û 2m2 + 8m − 10 = 0

\( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = - 5\end{array} \right.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD. Gọi O là giao điểm 2 đường chéo AC và BD. Qua O vẽ đường thẳng a cắt AD, BC lần lượt tại E, F. Qua O vẽ đường thẳng b cắt AB và CD lần lượt tại K, H. Chứng minh tứ giác EKFH là hình bình hành.

Xem đáp án » 12/07/2024 43,619

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AB, SC.
a) Tìm giao tuyến của hai mặt phẳng (ABN) và (SCD)
.
b) Chứng minh đường thẳng BN song song với mặt phẳng (SDM)
.
c) Xác định các điểm I, J lần lượt là giao điểm của đường thẳng AN và đường thẳng MN với mặt phẳng (SBD)
.
d) Tính tỉ số
\(\frac{{IB}}{{IJ}}\).

Xem đáp án » 12/07/2024 35,645

Câu 3:

Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB tới đường tròn (O) với A, B là các tiếp điểm.

a) Chứng minh bốn điểm A, B, M, O cùng thuộc một đường tròn.

b) Kẻ đường kính AC của đường tròn (O). Chứng minh OM // CB.

c) Vẽ BK vuông góc với AC tại K. Chứng minh: CK.OM = OB.CB.

d) Tiếp tuyến tại C của đường tròn (O) cắt AB tại D. Chứng minh OD ^ CM.

Xem đáp án » 11/07/2024 8,689

Câu 4:

Đặt tính rồi tính 155,9 : 45

Xem đáp án » 12/07/2024 7,463

Câu 5:

Cho tam giác ABC có A(−5; 6), B(−4; −1), C(4; 3). Tìm tọa độ trung điểm I của AC. Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Xem đáp án » 28/03/2023 6,855

Câu 6:

Cho nửa đường tròn (O), đường kính AB; Ax là tiếp tuyến của nửa đường tròn. Trên nửa đường tròn lấy điểm D (D khác A, B). Tiếp tuyến tại D của (O) cắt Ax ở S.

a) Chứng minh SO // BD.

b) BD cắt AS ở C. Chứng minh SA = SC.

c) Kẻ DH vuông góc với AB; DH cắt BS tại E. Chứng minh E là trung điểm của DH.

Xem đáp án » 12/07/2024 6,655

Bình luận


Bình luận