Câu hỏi:
11/07/2024 4,491Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Phương trình hoành độ giao điểm của (C) và đường thẳng d:
\(\frac{{2x + 1}}{{x - 1}} = x + m\;\left( {m \ne 1} \right)\)
\( \Leftrightarrow {x^2} + \left( {m - 3} \right)x - m - 1 = 0\) (1)
Khi đó cắt (C) tại hai điểm phân biệt A và B khi và chi khi phương trình (1) có hai nghiệm phân biệt khác 1
\(\left\{ \begin{array}{l}{\left( {m - 3} \right)^2} + 4\left( {m + 1} \right) > 0\\{1^2} + \left( {m - 3} \right) - m - 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 2m + 13 > 0\\ - 1 \ne 0\end{array} \right.\) (luôn đúng)
Gọi A(x1; x1 + m); B(x2; x2 + m) trong đó x1; x2 là nghiệm của (1), theo Viet ta có:
\(\left\{ \begin{array}{l}{x_1} + {x_2} = 3 - m\\{x_1}{x_2} = - m - 1\end{array} \right.\)
Gọi \(I\left( {\frac{{{x_1} + {x_2}}}{2};\;\frac{{{x_1} + {x_2} + 2m}}{2}} \right)\) là trung điểm của AB, suy ra \(I\left( {\frac{{3 - m}}{2};\;\frac{{3 + m}}{2}} \right)\), nên
\(\overrightarrow {IC} = \left( { - 2 - \frac{{3 - m}}{2};\;5 - \frac{{3 + m}}{2}} \right)\)
\( \Rightarrow CI = \frac{1}{2}\sqrt {{{\left( {m - 7} \right)}^2} + {{\left( {7 - m} \right)}^2}} \)
Mặt khác \(\overrightarrow {AB} = \left( {{x_2} - {x_1};\;{x_2} - {x_1}} \right)\)
\( \Rightarrow AB = \sqrt {2{{\left( {{x_2} - {x_1}} \right)}^2}} = \sqrt {2\left( {{m^2} - 2m + 13} \right)} \)
Vậy tam giác ABC đều khi và chỉ khi
\(CI = \frac{{\sqrt 3 }}{2}AB \Leftrightarrow \frac{1}{2}\sqrt {2{{\left( {m - 7} \right)}^2}} = \frac{{\sqrt 3 }}{2}\sqrt {2\left( {{m^2} - 2m + 13} \right)} \)
\( \Leftrightarrow {\left( {m - 7} \right)^2} = 3\left( {{m^2} - 2m + 13} \right)\)
Û 2m2 + 8m − 10 = 0
\( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = - 5\end{array} \right.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB tới đường tròn (O) với A, B là các tiếp điểm.
a) Chứng minh bốn điểm A, B, M, O cùng thuộc một đường tròn.
b) Kẻ đường kính AC của đường tròn (O). Chứng minh OM // CB.
c) Vẽ BK vuông góc với AC tại K. Chứng minh: CK.OM = OB.CB.
d) Tiếp tuyến tại C của đường tròn (O) cắt AB tại D. Chứng minh OD ^ CM.
Câu 5:
Cho đường tròn tâm O và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm). Đường thẳng d thay đổi đi qua M cắt đường tròn tại 2 điểm phân biệt C và D (C nằm giữa M và D)
a) Chứng minh tứ giác AMBO nội tiếp
b) Chứng minh MA2 = MC.MD
c) Chứng minh đường tròn ngoại tiếp tam giác OCD luôn đi qua điểm cố định khác O
Câu 6:
Cho nửa đường tròn (O), đường kính AB; Ax là tiếp tuyến của nửa đường tròn. Trên nửa đường tròn lấy điểm D (D khác A, B). Tiếp tuyến tại D của (O) cắt Ax ở S.
a) Chứng minh SO // BD.
b) BD cắt AS ở C. Chứng minh SA = SC.
c) Kẻ DH vuông góc với AB; DH cắt BS tại E. Chứng minh E là trung điểm của DH.
về câu hỏi!