Câu hỏi:
12/07/2024 757b) Cho hình bình hành ABCD có hai đường chéo AC và BD vuông góc với nhau (Hình 60).
• Đường thẳng AC có phải là đường trung trực của đoạn thẳng BD hay không?
• ABCD có phải là hình thoi hay không?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
b) • Do ABCD là hình bình hành nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường
Do đó AC ⊥ BD tại trung điểm O của đoạn thẳng BD.
Suy ra AC là đường trung trực của đoạn thẳng BD.
• Vì AC là đường trung trực của đoạn thẳng BD nên AD = AB.
Theo kết quả câu a, hình bình hành ABCD có hai cạnh kề AD và AB bằng nhau nên là hình thoi.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một viên gạch trang trí có dạng hình thoi với độ dài cạnh là 40 cm và số đo một góc là 60° (Hình 63). Diện tích của viên gạch đó là bao nhiêu centimét vuông (làm tròn kết quả đến hàng phần trăm)?
Câu 2:
Hình 62 mô tả một lưới mắt cáo có dạng hình thoi với độ dài của hai đường chéo là 45 mm và 90 mm. Độ dài cạnh của ô lưới mắt cáo đó là bao nhiêu milimét (Làm tròn kết quả đến hàng đơn vị)?
Câu 4:
Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O. Chứng minh:AC2 + BD2 = 4(OA2 + OB2) = 4AB2.
Câu 5:
Cho hình bình hành ABCD có tia AC là tia phân giác của góc DAB. Chứng minh ABCD là hình thoi .
Câu 6:
Cho hình thoi ABCD có . Chứng minh tam giác ABD là tam giác đều.
Câu 7:
Cho tam giác ABC cân tại A có M là trung điểm BC. Trên tia đối của tia MA lấy điểm N sao cho MN = MA. Chứng minh tứ giác ABNC là hình thoi.
về câu hỏi!