Câu hỏi:
12/07/2024 994Trong Hình 12, cho biết ABCD là một hình vuông. Chứng minh rằng:
a) Tứ giác EFGH có ba góc vuông;
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Do ABCD là một hình vuông nên và AB = BC = CD = DA.
Mà AE = BF = CG = DH nên EB = FC = GD = HA.
Xét DAEH và DDGH có:
; AE = GH; AH = DG
Do đó DAEH = DDHG (hai cạnh góc vuông)
Suy ra (hai góc tương ứng).
Xét DAHE có (trong tam giác vuông, tổng hai góc nhọn bằng 90°).
Do đó hay .
Khi đó là một góc vuông.
Chứng minh tương tự ta cũng có là một góc vuông.
Vậy tứ giác EFGH có ba góc vuông.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A (AB < AC). Gọi D là trung điểm của BC. Vẽ DE // AB, vẽ DF // AC (E ∈ AC, F ∈ AB). Chứng minh rằng:
a) Tứ giác AEDF là hình chữ nhật.
Câu 2:
Cho tam giác ABC có đường cao AH. Gọi I là trung điểm của AC, E là điểm đối xứng với H qua I. Gọi M, N lần lượt là trung điểm của HC, CE. Các đường thẳng AM, AN cắt HE tại G và K.
a) Chứng minh tứ giác AHCE là hình chữ nhật.
Câu 7:
Lấy một tờ giấy, gấp làm tư để có một góc vuông như trong Hình 16, dùng kéo cắt theo đường MN sao cho OM = ON. Mở phần giấy cắt được ra ta được một tứ giác.
Tứ giác đó là hình gì? Giải thích kết luận của em.
về câu hỏi!