Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
327 lượt thi 8 câu hỏi
1212 lượt thi
Thi ngay
259 lượt thi
699 lượt thi
261 lượt thi
1035 lượt thi
236 lượt thi
730 lượt thi
415 lượt thi
328 lượt thi
Câu 1:
Cho hình bình hành ABCD có hai đường chéo cắt nhau tại O. Qua O, vẽ một đường thẳng cắt AB và CD lần lượt tại M, N. Chứng minh rằng O là trung điểm của MN.
Cho hình bình hành ABCD. Gọi H và K lần lượt là chân đường cao hạ từ A và C đến BD.
a) Chứng minh rằng tứ giác AHCK là hình bình hành.
b) Gọi M là giao điểm của AK và BC, N là giao điểm của CH và AD. Chứng minh AN = CM.
c) Gọi O là trung điểm của HK. Chứng minh M, O, N thẳng hàng.
Câu 2:
Cho hình bình hành ABCD. Trên các cạnh AB và CD, lần lượt lấy các điểm M và N sao cho AM = CN. Gọi O là giao điểm của MN và AC. Chứng minh rằng ba điểm B, O, D thẳng hàng.
Câu 3:
Cho hình bình hành ABCD. Trên đường chéo BD lấy hai điểm M và N sao choBM=DN=13BD.
a) Chứng minh ∆AMB = ∆CND.
b) Chứng minh rằng tứ giác AMCN là hình bình hành.
c) Gọi O là giao điểm của AC và BD, I là giao điểm của AM và BC. Chứng minh rằng AM = 2MI.
d) Gọi K là giao điểm của CN và AD. Chứng minh I và K đối xứng với nhau qua O.
Câu 4:
Cho hình bình hành ABCD có AD = 2AB. Gọi M là trung điểm của AD. Kẻ CE vuông góc với AB tại E, MF vuông góc với CE tại F, MF cắt BC tại N. Chứng minh rằng:
a) Tứ giác MDCN là hình thoi;
b) Tam giác EMC là tam giác cân;
c) BAD^=2AEM^.
Câu 5:
Cho hình bình hành ABCD. Vẽ hình bình hành AECF (E ∈ AB, F ∈ CD). Chứng minh rằng ba đường thẳng EF, AC, BD đồng quy.
Câu 6:
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC, CA. Chứng minh rằng tứ giác MNPQ là hình bình hành.
Câu 7:
Cho hình bình hành ABCD có hai đường chéo cắt nhau tại O. Gọi M và N lần lượt là trung điểm của OB và OD. Chứng minh tứ giác AMCN là hình bình hành.
65 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com