Câu hỏi:

13/07/2024 7,851

Cho hình bình hành ABCD có hai đường chéo cắt nhau tại O. Qua O, vẽ một đường thẳng cắt ABCD lần lượt tại M, N. Chứng minh rằng O là trung điểm của MN.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình bình hành ABCD có hai đường chéo cắt nhau tại O. Qua O, vẽ một đường thẳng cắt AB và CD lần lượt tại M, N. Chứng minh rằng O là trung điểm của MN. (ảnh 1)

Do ABCD là hình bình hành nên AB // CD, suy ra ODN^=OBM^ (hai góc so le trong);

OB = OD (tính chất đường chéo của hình bình hành);

Xét ∆DON và ∆BOM ta có:

ODN^=OBM^;

OD = OB;

O1^=O2^ (hai góc đối đỉnh).

Suy ra ∆DON = ∆BOM (g.c.g).

Do đó OM = ON (hai cạnh tương ứng)

Vậy O là trung điểm của MN.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD. Gọi HK lần lượt là chân đường cao hạ từ A và C đến BD.

a) Chứng minh rằng tứ giác AHCK là hình bình hành.

b) Gọi M là giao điểm của AKBC, N là giao điểm của CHAD. Chứng minh AN = CM.

c) Gọi O là trung điểm của HK. Chứng minh M, O, N thẳng hàng.

Xem đáp án » 13/07/2024 8,450

Câu 2:

Cho hình bình hành ABCD. Trên các cạnh ABCD, lần lượt lấy các điểm MN sao cho AM = CN. Gọi O là giao điểm của MNAC. Chứng minh rằng ba điểm B, O, D thẳng hàng.

Xem đáp án » 13/07/2024 8,027

Câu 3:

Cho hình bình hành ABCD. Trên đường chéo BD lấy hai điểm M và N sao choBM=DN=13BD.

a) Chứng minh ∆AMB = ∆CND.

b) Chứng minh rằng tứ giác AMCN là hình bình hành.

c) Gọi O là giao điểm của AC và BD, I là giao điểm của AM và BC. Chứng minh rằng AM = 2MI.

d) Gọi K là giao điểm của CN và AD. Chứng minh I và K đối xứng với nhau qua O.

Xem đáp án » 13/07/2024 7,649

Câu 4:

Cho hình bình hành ABCD có hai đường chéo cắt nhau tại O. Gọi MN lần lượt là trung điểm của OBOD. Chứng minh tứ giác AMCN là hình bình hành.

Xem đáp án » 13/07/2024 7,578

Câu 5:

Cho hình bình hành ABCDAD = 2AB. Gọi M là trung điểm của AD. Kẻ CE vuông góc với AB tại E, MF vuông góc với CE tại F, MF cắt BC tại N. Chứng minh rằng:

a) Tứ giác MDCN là hình thoi;

b) Tam giác EMC là tam giác cân;

c) BAD^=2AEM^.

Xem đáp án » 13/07/2024 6,235

Câu 6:

Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC, CA. Chứng minh rằng tứ giác MNPQ là hình bình hành.

Xem đáp án » 13/07/2024 2,310

Bình luận


Bình luận